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The need for Modified Gravity

IH

e The ACDM “concordance model” works well, but...

— It requires 96% of the universe to consist of black “stuff” that we may
never be able to detect except gravitationally

— Dark matter has difficulty even closer to home, e.g., explaining why
rotational velocity follows light in spiral galaxies

e MOG fares well on many scales...
— In the solar system or the laboratory, MOG predicts Newtonian (or
Einsteinian) physics
— The MOG acceleration law is consistent with star clusters, galaxies, and
galaxy clusters

e |[f MOG is also consistent with cosmological data, it may be a more
economical theory than ACDM



MOG as a field theory

e MOG is a theory of five fields:
— The tensor field g, of metric gravity
— Ascalar field G representing a variable gravitational constant

— A massive vector field ¢, (NOT a unit timelike field!) responsible for a
repulsive force

— Another scalar field u representing the variable mass of the vector field

— Yet another scalar field w representing the variable coupling strength of
the vector field (included for generality, but w turns out to be constant
after all)



The MOG Lagrangian
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MOG and matier

e The MOG vector field must couple to matter

e The scalar field G must also couple to matter in specific ways to ensure
agreement with solar system tests (Moffat and Toth,
http://arxiv.org/abs/1001.1564)

e We specify this coupling in the case of a massive test particle by explicitly
incorporating it into the test particle Lagrangian:

L =-m+ awqsp,u”



MOG phenomenology

e The metric tensor is responsible for Einstein-like gravity, but G is generally
greater than Newton’s constant, Gy

e The vector field is responsible for a repulsive force, canceling out part of the
gravitational force; the effective gravitational constant at short range is Gy

e The vector field is massive and has limited range; beyond its range, gravity
is stronger than Newton predicts

e The strength of G and the range u~! of the vector field are determined by
the source mass



The MOG acceleration law

e Inthe weak field, low velocity limit, the acceleration due to a spherically
symmetric source of mass M is

GyM
:’2 [1+a—a(l+ ur)e 7]
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e The values of a and u are determined by the source mass M with formulas
fitted using galaxy rotation and cosmology data:
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The MOG acceleration law

e Atshortrange, ur < 1, we get back Newton’s acceleration law,

GyM
—

T =

e At great distances, we get Newtonian gravity with an “enhanced” value of
the gravitational constant:

GyM
7'2

F=—(14+a)

e This acceleration law is consistent with laboratory and solar system
experiments, star clusters, galaxies, and galaxy clusters across (at least) 15
orders of magnitude



MOG cosmology

e We investigated the consequences of MOG in the cases of
— The cosmic microwave background
— The matter power spectrum

— The luminosity-distance relationship of Type la supernovae
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MOG and the CMB

e Standard questions from colleagues:
— “Why don’t you use CMBFAST”?

— “Why don’t you use CMB<anything>"?



;eqp1=2.5d4*omegam*h*h*(2.7d0/tcmb)**4
EH (97) fitting formula for masive neutrino growth factor.

fnu=omegan/omegam
fcb=(omegac+omegab) /omegam

if (fnu.gt.0.0d0) then
apcb=0.25d0*(5.0d0-s rt(1.0d0+24.0dO*Fcb))h)*h

aktog=(2. tcm . tcm
yfsok2=17.2d0*fnu*(1.0d0+0.488d0
& *exg(—?.0d0*1og(fnu)/6.0d0))
& ] *(dble(annunr)*aktoq/fnu) **2
else

apcb=1.0d0
yfsok2=0.0d0
end if
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MOG and the CMB

e Many “CMB<anything>"s (e.g., CMBEASY) are CMBFAST in disguise:
— The computational engine is based on a version of CMBFAST

— The code is often machine-translated from FORTRAN into another
programming language

e |f CMBFAST is not easy to modify for a variable-G theory, CMB<anything> is
even harder



MOG and the CMB

e Mukhanov (Cambridge University Press, 2005) comes to the rescue with a
semi-analytical formulation* that does not hide the physics (it is not a mere
collection of fitting formulae)

* The effective gravitational constant at the horizon, G.¢ = 6Gy;, can be
substituted

e Similarly, in the gravitational context, )}, can be replaced with Q,, = 0.3,
accounting for the effects of G ¢

 On the other hand, when (), is used in non-gravitational contexts (e.g.,
calculating the speed of sound), it must be left alone

*Incidentally, CMBFAST also uses semi-analytical formulations 16
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MOG and the matter power spectrum

e Newtonian theory of small fluctuations

<'5'+C'18+C52k2 41Gp | 6 = 0
kT Ok 02 nup |0k =

for each Fourier mode § = 8. (t)e™ 4 (such that V2§ = —k?4)

e The MOG acceleration law can be used to derive the corresponding
inhomogeneous Helmholtz equation:

e—ull‘—f'lp(f-)
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MOG and the matter power spectrum

e The Helmholtz equation leads a shifting of the wave number: k'? = k? +
Art(Gogs — Gy )pa?/c?

e Changes to the sound horizon scale are unaffected by the varying strength
of gravity

e Silk damping introduces a G3/4 dependence (Padmanabham, Cambridge
University Press, 1993): kg, = kSilk(Geff/GN)3/4

e These results can be used in the analytical approximations of Eisenstein and
Hu (Apj496(1998)605, http://arxiv.org/abs/astro-ph/9709112)
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MOG and the matter power spectrum

Two key features of the matter power spectrum are
— Slope
— Baryonic oscillations

e MOG produces the correct slope
e MOG has unit oscillations not dampened by dark matter

e Future galaxy surveys will unambiguously show if unit oscillations are
present in the data

e The matter power spectrum can be key to distinguish modified gravity
without dark matter from cold dark matter theories
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MOG and continuous matter

The CMB and matter power spectrum results were based on the MOG point
particle solution

e |[sit really appropriate to use the point particle solution for continuous
distributions of matter? (No)

e How does MOG couple to continuous matter?

e Two constraints:
— MOG must obey the weak equivalence principle (WEP)

— MOG must be compatible with precision solar system observations,
specifically with the values of the Eddington parametersf =1,y =1
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MOG and continuous matter

e The two Eddington parameters f and y determine deviations from the
Newtonian potential in post-Newtonian models:

12 ap (MY
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e The Eddington-parameter f is identically 1 for MOG

e The Eddington-parameter y has the same value as in JBD theory, which can
be “cured” by introducing a scalar charge that makes it conformally

equivalent to the minimally coupled scalar theory
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MOG and continuous matter

The WEP is often interpreted as a requirement for a metric theory of
gravity, which MOG obviously isn’t

A more relaxed interpretation: the theory must be conformally equivalent
to a metric theory of gravity. That is to say that there must exist a conformal
transformation under which any non-minimal couplings between matter
and gravity fields would vanish

Conformal transformations add a vector degree of freedom (the special
conformal transformation, a translation preceded and followed by an
inversion) and a scalar degree of freedom (dilation); this agrees with the
degrees of freedom to which the matter Lagrangian is expected to couple
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MOG and continuous matter

Conformal transformations:

Dilation: x'* = ax*

: : xH—pHx?
Special Conformal Transformation (SCT): x'* =
1-2b-x+b2x2

The SCT can also be written as

x'® xH
—___pH

x/2 x2

The metric is sensitive only up to a rescaling:

g =a?2(1-2b-x + b*x?)%gHv
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MOG and continuous matter

e Work-in-progress: these considerations about the WEP and y can lead to a
general prescription for the coupling between the MOG fields and matter

e We anticipate that the field equations for a perfect fluid will contain a
vector charge in the form

G

Gy

d'u, JH = w T u,,

and a scalar charge in the form

G—lT
]_2
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MOG and continuous matter

e Given an equation of state, we can write down the MOG field equations in
the case of the FLRW metric,

ds? = dt? —a?(t)[(1 — kr?)~1dr? + r?2dQ?]

e The equations are, after setting w = const.,
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MOG and continuous matter

The FLRW field equations can be solved numerically, given suitable initial
conditions and some assumptions

We generally ignore the self-interaction potentials:
Vo =Ve=V, =0

We set the cosmological constant A to 0 and the curvature k = 0

We assume a simple equation of state, p = wp, and we are mainly
interested in the late “dust” universe, w = 0

IR

We use the present epoch to establish initial conditions: e.g., a/a |t=to
2.3x 1078 s7%, and plp=, = 107%° kg/m>

29
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MOG and the deceleration parameter

e The deceleration parameter, g = — da/a?, is 0.5 for an Einstein-de Sitter
universe, but must be small (or negative) to be consistent with Type la
supernova observations

e Inthe ACDM model, only a cosmological constant can reduce g as required

e For MOG, choosing a small positive V; = const. yields the desired result

Luminosity-redshift data of type la supernovae. Solid blue line is the MOG prediction. Thin black
line is ACDM; the dashed red line is the Einstein-de Sitter universe. The horizontal dotted
line corresponds to an empty universe.



Challenges

e |nflation —is it needed?

e BBN —atshort range, G.¢s is always Gy, but a variable-G theory can affect
the expansion rate and abundances

e Final form of the MOG Lagrangian, with a general prescription for the
coupling to matter

e (Can the CMB and matter power spectrum results be reproduced without
the point source solution?

e Do we really need V;?

e N-body simulation
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Conclusions

e Much work remains, but...

e MOG appears to be consistent with a large body of cosmological
observations

e MOG can reproduce some precision cosmological tests

e MOG is falsifiable qualitatively (baryonic oscillations), even if detailed
calculations change
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