The Pioneer

 Anomaly

 Seeking an Explanation in

 Telemetry Records

The Pioneer Anomaly

- Anomalous acceleration of the Pioneer 10/11 spacecraft was detected in the 1980s, confirmed by several research teams
- May be mechanical in origin, may be "new physics"

 In the past, short stretches of data were studied; new effort under way with complete data set, including on-board telemetry.

Science of the Anomaly

- Astronomy (planetary orbits)
- Relativity theory / fundamental physics
- Radio science
- Thermal physics
- Engineering
- Data processing
- Numerical analysis

The Pioneer 10/11 Missions

- Launched in 1972 and 1973
- First to explore beyond Mars
- First to visit Jupiter and Saturn
- Planned duration: 600-900 days

Mission Objectives

 Primary Objectives Explore the asteroid belt Explore beyond Mars Explore Jupiter Secondary Objectives Explore the outer solar system Search for gravity waves Search for "Planet X"

Experimental General Relativity

May not work at large distances

- Galaxies do not rotate as expected
- Supernovae, microwave background show accelerated expansion

Pioneer Orbits – Early Years

Pioneer and Voyager Orbits through the Outer Solar System

The Pioneer Spacecraft

Science Instruments

- 1. JPL Helium Vector Magnetometer
- 2. ARC Plasma Analyzer
- 3. U/Chicago Charged Particle Experiment
- 4. U/Iowa Geiger Tube Telescope
- 5. GSFC Cosmic Ray Telescope
- 6. UCSD Trapped Radiation Detector
- 7. UCS Ultraviolet Photometer
- 8. U/Arizona Imaging Photopolarimeter
- 9. CIT Jovian Infrared Radiometer
- 10. GE Asteroid/Meteoroid Detector
- **11. LaRC Meteoroid Detector**
- 12. Flux-Gate Magnetometer (Pioneer-11 only)

The Pioneer Spacecraft

- Mass: ~250 kg
- Radioisotope Thermoelectric Generators
- Electrical Power: ~160W (at launch)
- 11 Scientific Instruments
- 3m High Gain Antenna
- Transmitter: 8W
- Data rate: 16-2048 bps
- Spin stabilized (4.8 rpm nominal)

Orientation Maneuvers

- Few maneuvers needed for spinning spacecraft
- Few maneuvers → clean data
- Ingenious "Closed loop" CONSCAN maneuver lets the spacecraft "home in" on DSN signal
- Late in the mission, ~2 CONSCANs a year were performed

Pioneer Power Source

- RTG Thermal Power: ~650W
- Electrical Power: ~40W
- 4 RTGs per spacecraft

Passive Thermal Control

- Louver system
- Thermally activated bimetallic springs
- Louvers are fully closed <40°F*

*When the Pioneer 10/11 spacecraft were designed, NASA was not yet using the metric system.

Pioneer Louver Arrangement

First Year Seminar in Science Carleton University, October 16, 2006 Copyright © 2006 Viktor T. Toth http://www.vttoth.com/ 16

Pioneer 10 After 30 Years

- Distance from Sun: ~80 AU
- Round-trip light time: ~21 hours
- Speed relative to the Sun: ~12 km/s

Pioneer 10 After 30 Years

- One instrument (GTT) still operating (powerdown command sent last track, but never confirmed)
- Bus voltage ~ 26VDC instead of nominal 28VDC
- Transmitter XCO failed (probably due to cold)
- Transmitter still operating in coherent mode
- Many temperature readings "off the scale" or outside calibrated ranges
- Propellant lines frozen (no maneuvers possible)

Pioneer 10/11 are the most precisely navigated deep space craft to date.

First Year Seminar in Science Carleton University, October 16, 2006 Copyright © 2006 Viktor T. Toth http://www.vttoth.com/ 19

Deep Space Network

the set of the

States I I III III III III

First Year Seminar in Science Carleton University, October <u>16</u>, 2006 Copyright © 2006 Viktor T. Toth http://www.vttoth.com/ 20

Downlink Power Budget

Communications Subsystem Transmitter Block Diagram

Doppler Measurements

Doppler Measurements

One-way Doppler

Two-way Doppler

Three-way Doppler

Terrestrial Effects

Tectonic Plate Motion

Solar Effects

Doppler Fits

- Model predicts spacecraft motion and Doppler
- Antenna measures actual Doppler
- Difference is called the "Doppler Residual"
- "Bad" fit:

Accuracy is measured in mHz!

Doppler Residuals

Phys. Rev. D 65 (2002) 082004, gr-qc/0104064

Discovery of the Anomaly

- Search began in 1979 (for "Planet X")
- Anomaly first detected in 1980
- Initial JPL ODP analysis in 1990-95
- Aerospace Corporation confirms: 1996-98
- Another confirmation by Markwardt (2002)
 Also confirmed by Olson (2005)
- Also confirmed by Olsen (2005)

Interpreting the Residual

- Frequency shift: $(5.99 \pm 0.01) \times 10^{-9}$ Hz/s
- Velocity change: $(8.74 \pm 1.33) \times 10^{-10} \text{ m/s}^2$
- Clock acceleration: $(2.92 \pm 0.44) \times 10^{-18} \text{ s/s}^2$
- Velocity change (acceleration) is the "conventional" interpretation
- Effect small by engineering standards, but huge by the standards of gravity physics

Unknown direction

Consensus as of 2006

- The Pioneer Anomaly is real
- Conventional physics fails to explain it
- Alternatives proposed include
 - Modified Newtonian Dynamics (MOND)
 - Nonsymmetric gravitational theory
 - Dark matter
 - Yukawa potential ($V_{\text{grav}} = -Ge^{-mr}/r$)
- $a_P \approx cH_0$ coincidence?

Thermal Radiation

- Only ~65W of directed heat needed
- ~2500W heat available on board
- Heat sources include
 - Radioisotope thermoelectric generators (RTGs)
 - Electrically generated heat
 - Small radioisotope heater units (RHUs)
- Previous estimates: insufficient directed heat to explain the anomaly
- Conclusions based on rough estimates

Telemetry

- Precise and detailed information on
 - Electrical power
 - Temperatures
- All information from spacecraft was packaged in Master Data Records (MDRs)

 Once science data was extracted and spacecraft operations no longer needed the data, MDRs were thought to be expendable

BUT...

The Pioneer 10/11 MDRs were saved!

First, on tape
Later, 'floptical' disks
Total amount of data: 40 gigabytes

What's in the Telemetry?

MDRs contain

- Reception characteristics
- Science data
- Engineering telemetry
- Types of readings
 - Thermal
 - Electrical (voltages, currents)
 - Propellant pressure
 - Switches and sensors
 - Command and logic states
- First Year Seminar in Science

Carleton University, October 16, 2006

Analog Readings

Analog data is low-resolution (6 bits, 64 levels)
Calibration is important

What do we see?

Individual events (e.g., thruster firings)
Long term trends (e.g., propellant temp.)

VPT1 temperature on board Pioneer 11 on April 19-20, 1974 (major course correction maneuver)

Nitrogen tank temperature on board Pioneer 10, entire mission.

New Analysis

 Design details + Telemetry record = New estimates on acceleration and its temporal profile! Better yet: Incorporate thermal model into orbit estimation

Focus

- RTG heat: Radiation reflected off the back of the HGA, which is highly reflective
- Electrical heat: most heat generated inside main spacecraft body, emitted preferentially through the back

New Analysis

- Complete Doppler data set has been collected and assembled
- Telemetry is available
- It is possible to "refly" both missions, analyzing any anomalous behavior
- Using telemetry in orbital analysis is new technique; never done before
- We hope to find an unambiguous answer

Conclusions

- Wikipedia lists the Pioneer Anomaly as one of the great 'unresolved problems' in physics
- New Scientist calls it one of "13 things that do not make sense"
- But, the explanation may be mundane
- Either way, it's win-win: new physics is great, but improved spacecraft navigation is also a valuable result

Questions?

First Year Seminar in Science Carleton University, October 16, 2006 Copyright © 2006 Viktor T. Toth http://www.vttoth.com/ 44