ON THE SINGULAR POINTS OF A FUNCTION
GIVEN BY ITS SERIES EXPANSION
AND
THE IMPOSSIBILITY OF ANALYTICAL PROLONGATION IN
VERY GENERAL CASES*

By M. Eugene FABRY

Professor at the Faculty of Sciences of Montpellier

1. An analytic function of the imaginary variable z being given, if we develop it
following the powers of z — a, the circle of convergence generally passes through a

single singular point, the one that is closest to point a.

If, on the contrary, the coefficients of the series Y, a,2" are chosen arbitrarily,
in such a way however that the radius of convergence is neither null nor infinite,
the function defined by this series has at least one singular point on the circle of
convergence, but in general it has several. In a Memoir on functions given by their
Taylor development (Journal de Liouville, 4th series, vol. VIII), M. Hadamard has
given important results on the search for these singular points. I propose to generalize
some of these results and to deduce from them new methods particularly for searching
if a point on the circle of convergence is singular. In many of these methods, even
all the points of the circle of convergence are singular, which allows the formation of
series, much more general than those currently common, which cannot be analytically

prolonged beyond the circle of convergence.

*Sur les points singuliers d’une fonction donnée par son développement en série et 'impossibilité
du prolongement analytique dans des cas tres généraux. Annales scientifiques de I'E.N.S. 3e série,
tome 13 (1896), p. 367-399. Translated by V. T. Toth utilizing Claude (Anthropic, Inc.) Al
technology.
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2. Let
fl(z)=ap+az+...+a2"+...

be a series whose circle of convergence has radius 1, that is to say, as M. Hadamard
showed, such that the upper limit, for m = oo, of {/|a,| is equal to 1, or that of L|a"|

is equal to 0. Let us form

"(t n+1 n+1n+2)...(n+
f—():an—l—anHt +...+an+ptp( ) ) p)—i-...,
1.2...n 1.2...p

where ¢ is real and between 0 and 1.

1)

If z = 1 is not a singular point of f(z), the upper limit, for n = oo, of {/55—= is

smaller than ﬁ If z =1 is singular, it is equal to ﬁ

The coefficients P ("J”})zw increase as long as p <
P

The largest corresponds to the value of p such that

5 t, then decrease constantly.

nt l<p< nt
1—¢ =P 1T¢

More generally, let us give p a value such that £ has for limit ﬁ, when n increases

indefinitely.

The use of the asymptotic value of the function I'(n) shows that the nth root of

this coeflicient has for hmlt . Indeed, we have,
" 1
Ln+p+/ Ln+xdx<Ln+
p 1 z
9 p
+Li+ R <L(n+1)+/ Ln+xdx,
2 P 1 T
Ln—i—p —L ntp _i_an——l—p
n+1 P n pn+1)
1 1 2)... t
1 (n+ )(n+2) (n+p)pp L +p+pL ntpty
n 1.2...p n+1 D
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If p increases indefinitely with n, in such a way that £ has for limit ﬁ, the two

extreme members have the same limit L%_t and {/ tpw tends towards 1%1:

Dividing by this coefficient, and setting p + n = m. Let

plp—1)...1
Prmim—1)...(m—p+1)’

where p increases with m, in such a way that £ tends towards ¢.

If z =1 is not a singular point of f(z), {/|em(t)| has an upper limit smaller than
1, and as ™ has a positive limit, 1, the same is true for 3§/, (t)]-

If z = 1 is singular, the upper limit of {/|p,,(t)], and also that of X/|p,(t)|, is

equal to 1 if, when m increases indefinitely, n = m — p passes through all integer
values; which takes place, for example, if we take the number p between mt and
mt — 1.

But if v > Am, X being a fixed quantity also small as we wish, it is useless to take

into account the terms of ¢,,(t) that follow a,,,,t”. Indeed, if n is large enough,

jan] < (X +2)" ()

and the ratio t’;‘T*V” of two consecutive coefficients decreases when v increases. The
sum of the terms of ¢,,(t) that follow a,, ,t” will therefore have a modulus smaller

than

(m+1)...(m+v) m+v+1

I+e)m e 1+t(1+e
(1+e) (p+1)...(p+v) ( )p+y—|—1

m—{—y—|—1)2
p+v—+1

+ <t(1 +¢)

e represents here, and will represent in the following, a positive quantity that can be chosen as

small as we wish, if n is large enough.
Ann. de ’Ec. Normale. 3¢ Série. Tome XIII. October 1896. 47
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where dm < v < Am + 1. If € is small enough and m large enough, the ratio of

14X
14+X7

than 1. The mth root of the progression therefore tends towards 1, if m becomes
infinite. On the other hand

this geometric progression will differ as little as we wish from ¢ which is smaller

(m+1)(m+2)...(m+v) - Yom+4x

p+L(p+2)...(p+v) 0 Lp+xdx
— (LY ) LA L
= (m+v)L (p+v)L ’ + Lp,
1 EerVV(m—i-l)...(m—i-V)
mL (14"t (p+1)...(p+y)]

_ m+uL(1+6)(m—|—V) _ptvy
m m m p m . p

p+v v_mt

whose limit is

1+ ML(1+¢e) + (1 + ML(1+X) — (t + ML (1+%).

This expression increases with ¢, and for ¢ = 1 reduces to the first term, which is
as small as we wish. Therefore, if ¢ < 1, and if € is small enough, it will be negative,
and the mth root of the modulus of the sum of terms that follow a,,., has an upper

limit, for m = oo, smaller than 1.

Similarly, if A < ¢, the sum of terms between a,,_, and a,,_, has a modulus smaller
than

mo L pp=1)...(p=v+1)
(1+¢) trmm—1)... (m—v+1)

“a —l—pa)_(nyz— nE (t(l +i>_<£_y>)2+---+ (t(l ﬂ;)—(é_ y))w] 5

the ratio of this progression will differ as little as we wish from ﬁ, which is

370



smaller than 1, and

—1)...(p—v+1 vlop—
L= p-vtl) _op P
m(m—1)...(m—v+1) m Jo m—x

— 1 — 1
:(m—u—l—l)Lu—(p—u—i-l)L&—l—uLﬁ,
m p

1 1
—L|(1+e)™ "=

—-1)...(p— 1 —
o= (vt ) ] movp

m trm(m—1)...(m—v+1) m
+m—y+1Lm—V—|—1_p—z/—l—le—y—l—leiLi’
m m m D m t

whose limit

(1= NL(1+ )+ (1= L1 = A) — (t — AL (1 - 5)

is negative, if ¢ < 1, and if ¢ is small enough.

Therefore, if in ¢,,(t) we keep only the terms between a,,_, and a,,,, the modulus
of the sum of the suppressed terms will have an mth root inferior to a quantity smaller
than 1, provided that m is large enough; and these terms will have no influence on

the result stated, which leads to the following theorem:

Let
m+1 (m+1)...(m+v)
m(t) = Qpm + Qpart———— + ...+ A’
om(f) T+l 1) (p )
1p 1 plp—1)...(p—v+1)

Tl e Ay — :
- hm trmm—1)...(m—v+1)
where p is an integer varying with m in such a way that £ tends towards 1, and
v>Am, 0 < A<t<l. Ifz=1 1is not a singular point of f(z), the upper limit, for
m = 00, of }/|em(t)| is smaller than 1; and if this upper limit is 1, the point z = 1

15 singular.

t is here an arbitrary quantity, which can vary with m, provided it remains between
two fixed limits between 0 and 1, and that 2 tends towards 1. We can, for example,

suppose t = 2.

Reciprocally if, t remaining fized, p varies in such a way that m—p passes through
all integer values, for example if p is between mt —1 and mt, and if z = 1 is a singular
point, {/|om(t)| has upper limit 1; if this upper limit is smaller than 1, the point z = 1
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s not singular.

If we set a, = e?(@ntn) ¢’ and a” being real, p,,(t) takes the form e2(#m*ivm),
and the upper limit of %/|¢,,(t)] is equal to the largest of the upper limits of “ﬁnﬁ
and “i#. If, in ,,(t), we replace the terms a, by the real part of a,e” %%, we see
that, if the point z = 1 is not singular, {/|¢’ | will still have an upper limit smaller
than 1, whatever o« may be, which can thus vary with m. If /|¢. | has upper limit

1, the point z =1 is singular.

3. Let z = te'; if 7/|p,(te?®)| has upper limit 1, the point z = ¥ is singular.
If, on an arc between —§2 and +€), there is no singular point, this root ™ has an

upper limit smaller than 1, provided that —2 < w < +{2, and the mth root of

E |€21a ©Om (tezwl ) + eQ@ﬁ(pm (tezwg) 4+ eQVygpm (te“"") |

will also have an upper limit smaller than 1, whatever the arcs «. If this upper

limit is 1, there will be at least one singular point on the arc +(2.

If the arcs wy, wa, ..., w, vary with m, in such a way that |w| has, for m = oo,
an upper limit Q, and if 7/ %EeQiO‘gp(tGW) has upper limit 1, there will be a singular
point on the arc £(Q2+¢). And if all the w tend towards zero, there will be a singular
point on the arc +¢, ¢ being as small as we wish; the point z = 1 will therefore be

singular.

Let n positive arcs wy, ws, ..., Wy, £ their sum, and ay, as, ..., o, arbitrary arcs.
We have

cos(aq + vwy) cos(ag + vws) . . . cos(ay, + vwy,)

- 2in{ei(cu—&-uwl) + e—i(a1+uw1)} o {ei(an+uwn) + e—i(an""/wn)}
= iZei[i(al'i"/wl)i(olQ"FVwQ)i...i(Osz’-an)]
AL ,
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the sign ¥ comprising the 2" terms obtained by the permutation of the n signs +.

Each of these terms is of the form

i(atvw)

where
lw] < €.

In ,,(te™), let us take for w the 2" values +w; + wy & ... &+ w,, and for a the

corresponding values. Then let

1 i W
U (t) = Q—nEe Om(te™)

= (A, COS (V] COS Qg . .. COS AUy + . . .
(m+1)...(m+v)
p+1)...(p+v)

Lp
+a;,_1——cos(a] —wq)...cos(a, —wy,) ...
17 cos(an = wi) .. cos(an, — w,)

+ami e’ cos(ag + vwy) ... cos(ay, + vwy,)

ve 11 (vt
"trm(m—1)...(m—v+1)

cos(ag — vwy) ... cos(ay, — vwy,).

If wy +ws+...4+w, tends towards 0, and if {/|¢,(¢)| has upper limit 1, the point

z = 1 will be singular.

Suppose the terms a,, replaced by the real part a!, of a,e”*!, 3, being able
to vary with m, and let us seek to determine the arcs o and w in such a way that
the terms of 1,,(t) are all of the same sign. If this can take place for an unlimited
sequence of values of m such that ’m tends towards 1, w; + wy + ... + w, and

%L] COS (v] COS iz . . . COS iy | tending towards 0, the point z = 1 will be singular, be-

cause {/|al, cosay cosas . .. cos a,| will tend towards 1 for these values of m, and the
other terms of ,,(t) add to the first.
Let
T
V= — = luwi,

2

4 being a positive or negative integer; then

Wy, = 1’ Qy = — Wy, wheren =23,...
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cos(ay + vwy) changes sign for the values

V:u+k/w11

and cos(ay, + vw,) for

v=p+ (2k + 1)2”_21 =+ W
w1 w1

If ¥ =0, cos(ay + vwy) is only null. If &’ is divisible by 2”72, the quotient being
even, cos(a,+vws) also cancels and the product cos(a;+vw;) cos(aa+rws) . . . cos(a,+
vwy) changes sign for v = p, and has no other sign change between the values v =
== 512”‘1. As in ¢, (t) we can suppose |v| < Am, it suffices to choose n such that
Z-2""1is larger than Am + |u[. We then have

w1t wo+ ... Fw, < 2wy

and
Hw Hwy Hwy
COS (] COS (Y3 . . . COS (v, = SIN i COS —— Leos =L cos
2 22 2n—1
. 2m—1 )
sin pwq ikl SIN” fiw
= & 2 e S —
n—1 Z n—1 MWt
2 Ml 27—l gin ( on )

and, if we suppose

™
0< |luw1‘ < Za

we deduce )
sin® pwq
|Mw1 |

/
m-+vq

4
| cos g cos g . . . cos au, | > ZP‘MM’-

a,. being supposed positive, let a; Urpygrs oo be the first negative terms,

m—4uvy? a

, . . .

mtvgrr? Amiversr - , the first following terms that are still positive, and so on,
/ !/

Uty -+ A,

then a’

/ /! / : :
Ui and Uy Qs -5 Gy, Deing the terms that change sign

between a, ,,, and a Let us take successively for v the values vy, vs, ..., v,

m m+Am*

then —vj, ..., , w1 keeping the same value w; = . Then |uw| remains smaller

Tam
than 7; and if ‘Hq tends towards 0, Yw < 7rq+q will also tend towards 0.
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On the other hand, we have

1 1 4 d 2 1
0 > —XL|cosa| > —3L ’_QMM _4tdy, =2 + —XL|y|
m m T m TAM  m
and
q q
YL|n|+L(1.2...q) + L(1.2...¢) >/ Lxda:+/ Lz dx
1 1
=qLg+¢Ld —q—q +2.
Therefore

1 / 2 ’
—XL|cosal > a+4q (L——l) I GO
m m TA

an expression that tends towards 0 at the same time as %q/. We thus arrive at

the following theorem:

Bm being a variable arc, let q be the number of sign changes of the real part al, of
ane”nt when n varies from m — Am to m + Am. If, for an unlimited sequence of
1

values of m, —Llay,| and L tend towards 0, the point z = 1 is singular.

Suppose that between a;, and a,, ,,,, the number of sign changes is infinitely small
compared to m; this theorem applies if %L]a“ tends towards 0 for a sequence of values
of n between each m(1+ \') and m(1+ X —X') where 0 < X' < A; that is to say, if for
all these values of n, %L|a’n| has upper limit 0. If, on the contrary, this upper limit
is smaller than 0, we can suppress a,2" without changing the singular points of the
circle of convergence: so that the terms between a,, ., and @, ym reduce to the

form a//te?nt,

4. We can further generalize this result by multiplying the series by a polynomial
P(z); if the point z = 1 is singular for the function P(z) x f(z), it is singular for
f(2). The degree of this polynomial can even increase indefinitely. Suppose, indeed,

that z = 1 is not singular; we could find a fixed quantity 6 such that
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/(@)
1.2...n

_ 1—0\"
1—t/) 7

provided that n is large enough. Let

P(2)=Ag+Az+Ayz? +.. .+ A2,

Qz)=A(l+2z+22+...+2"),

the coefficients Ay, A, ..., A, having moduli smaller than A, and v being such

that n — v increases indefinitely with n. We have

1 d"P(t)f(t)

1.2...n dtm
A ) P frI)  PU()
_1.2...np(t)+1.2...(n—1) 1 +"'+1.2...(n—y)1.2...y’

‘ 1 d”P(t)f(t)‘ _ (1_—9)" |:Q(t)+1;_le(t)+---+ (1_9)v Q(u)(t)]

1.2...n dtm 1—t 1—-t) 12...v
1-0\" 1-40 1—60\" , 0(1—¢t) (1—06t\" (1 —1t) (1—06t\"
= (—= t+ —— — | A A
(1—t) Q(+1—t)<(1—t) (1—6) (1—t> = (1-6) \1—-¢t) "’
whose nth root has an upper limit, for n = oo, smaller than ﬁ, if ¥/A has upper

limit 1.

Let us set, as in No. 2, n +p = m, £ tending towards 1, and form the function

©m(t), where each coefficient a,, is replaced by

bn = AOGn + Alan—l +.ooF Al/a'n—ua

LIA|
m

infinite with m. The A can thus vary with m as well as v. We can further neglect

having upper limit 0 for m = oo, and v being such that m(1 — t) + v becomes

the non-included terms between b,,_»,; and, if A < 1 —1¢, v can be supposed equal to

Am.

The same reasoning applies to all points of the circle of convergence, which allows
us to perform the transformations of No. 3. Consider the sequence b,,b,,41 - - . bits,

where v = Am. If we can find variable quantities A with m, % having upper limit
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0 for m = oo, such that, for an unlimited sequence of values of m, the real parts ¥/,

b1y o Uy, Of the b have only a number of sign changes infinitely small compared

to m, %ﬂl tending towards 0 for values of u between each A'm and m(A — X'); the

point z = 1 is singular.

Suppose that, for a sequence of values of m, the real parts of a,,e~"*»! have, between

n = m and m + Am, only a number of sign changes infinitely small compared to m.

We have seen that the point z = 1 is singular, except in the case where, by suppressing
L|a

portions of terms such that % has an upper limit smaller than 0, we obtain smaller

intervals, but such that between a,, and a,, , all terms are of the form
alte’.
In this case, suppose the following terms put in the form
an = e"(al, +ial),

and suppress the common factor €. The quantities &’ simplify if the A are supposed

real. Because the a' are null for sequences of terms that can be represented by

Am—1Gm—2 - -« Am—Am;
we then have

/ / / / / /
bm = Aoam7 bm+1 = Alam+1 + A1Gm7 ey b

m—v

=Aa ., +...+ A,

m+v

where

V= A\m.

We can conclude that the point z = 1 is singular when we can determine the

quantities A such that the b have only a number of sign changes infinitely small

/

mt,| having upper limit 0 when p takes values between \'m

compared to m, %L|b
and (A — \)m.

Ann. de I’Ec. Normale. 3e Série. Tome XIII. October 1896. 48
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5. Let

an = pne™rt = e"(al, +idl).

To determine the sign changes of a/, = p,, cos(w, — ), suppose we mark, on the
circumference of radius 1, the arguments w,, of the terms between a,, and @, \m, by
joining the consecutive points by the shortest arc, so as to form a continuous sinuous
line. The sign of a/, will change each time this line crosses one of the points e(’+2)*,
The number ¢ of sign changes of @, is equal to the number of intersection points of
the preceding line with a diameter, which can be chosen to make ¢ minimum. For
each value of m, let 3,, be the arc that corresponds to this minimum value of ¢, A

being able to vary, but without tending towards 0.

Suppose that = has lower limit 0, for m = oo, that is to say tends towards 0 for
an unlimited sequence of values of m. We conclude that the point z = 1 is singular
if, for the values of n between m(1+ X') and m(1+ X — X'), 2L]|p,, cos(w, — 3,,)| has
upper limit 0; that is to say if, for an unlimited sequence of these values of n, %Lpn
and L L[ cos(w, — B,)| tend towards 0.

This last expression tends towards 0 at the same time as %L|wn — B — 5 L k|
(k being chosen so that the arc remains between —7 and +7), and in particular

whenever

Wy — B = T + km
2
does not tend towards 0.

For example, if, for each of these values of n, there are two arcs 8 and ' such
that L tends towards 0, %L| B — ' £ kr| tending towards 0, one of the expressions
%L|wn - B -5 £k, %L|wn — B — 5 £ k'm| will always tend towards 0. It only
remains then to check if, for the values considered of n, %Lpn has upper limit 0. But
if this upper limit is smaller than 0, we can suppress these terms without changing

the singular points of the circle of convergence.
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Let am_1, Gm_2, .., Gm_xm be one of the sequences of terms thus suppressed, m

taking an unlimited sequence of values. Let v = Am, and

bm = AOCLma bm—l—l = A[)am—‘rl + Alamy SRR bm+u = Aoam-i—u +...+ Ayama

the A being imaginary, variable with m, but such that % has upper limit 0. The
point z = 1 will still be singular if we can choose these quantities A such that the b

fill the conditions obtained for the a.

For example, if the A are all equal to e*, we are led to construct the polygon
whose vertices represent the quantities a,,, am + Gmity ooy G + Gyt + -0 + Ggy-
The real parts of b, byt1, -, by, change sign each time this polygon crosses the
diameter that corresponds to the directions e *#*2)*, We can choose the diameter
that gives the number of intersection points ¢ minimum; and, if - tends towards
0, we conclude that the point z = 1 is singular, provided that, for the values of u

between A'm and (A — X)m, +L|b;, | has upper limit 0.

6. It is easy to obtain fairly general cases where these methods will show that the

point z = 1 is singular.

Form the differences |w, 11 — wy,| between 0 and 7, for the values of n between m
and m + Am. Among the diameters situated between two arcs § and 3+, there will
be at least one cutting the line that joins the arguments in a number ¢ of points less

Y
than or at most equal to % S A w1 — Wyl

If L S 1 — wy| tends towards 0, < will tend towards 0 for several distinct
diameters, and we can always choose 8 such that %L\ cos(w, — )| tends towards 0.
Therefore, if 1L|p,| has upper limit 0, for the values of n between m(1 + \') and

m(1+ X —X), the point z = 1 is singular.
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If, when m becomes infinite, |w,,1—w,| tends towards 0 for the values of n between

1 +X
m and m + Am, — >
that we divide the differences |w,+1 — wy| into two groups, the ones tending towards

0, the others being able to be arbitrary, % anw)‘m |wnt1 — wy| Will tend towards 0 if,

|wni1 — wp| also tends towards 0. More generally, suppose

in these intervals, the differences are all from the first group, except for a number ¢

such that % tends towards 0.

In particular, if |w, 41 — wy,| tends regularly towards 0, for all infinite values of n,
the point z = 1 is singular, because we suppose that there always exist terms such

that L"ﬁ tends towards 0.

The point z = 1 is still singular whatever p,,, if |w,+1 —w,| tends towards 0 except
for terms such that between a,, and @, 1, there are only ¢, Z tending towards 0 for

all infinite values of m.

Similarly, if w, 11 —w, tends towards a limit « for an infinite sequence of values of
n, and if we can form an unlimited sequence of values of m such that between w,, and
Wm+m there are only ¢ differences that do not tend towards «, - tending towards 0,
Lo having upper limit 0, when n takes values between m(1+ \') and m(1+ X — ),
1o’

the point z = e™* is singular.

This can take place for several points, and even, in certain cases, for all points of

the circle of convergence. Consider, for example, the series

E ann ezwl Az

which gives

1 1
Wpi1 —wp, = V0En+1— nt (1+—).
\/Ln—i- vL(n+1) n

If n is large enough, w,.1 — w, will differ as little as we wish from +/Ln.
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On the other hand,

V) - V= )
\/Ln—i-\/L(n—{—p)

ya
which tends towards 0 if £ remains finite, or even if ;LL tends towards 0.
n

Let a be an arc between 0 and 27. Consider the sequence of values of n between

a+2km)2 21 €(a+2kﬂ')

el and 2+2m, t tending towards 0 when k becomes infinite. w1 —w;,

tends towards « for all the values of n between n and n + An, and the point e~
is singular whatever «, provided that %Lpn has upper limit 0 for the values of n
that correspond to each arc a. This takes place, in particular, if Ln—’;” tends regularly

towards 0 for a sequence ny, no, ..., n, of values of n such that ™ remains finite, or

Lz

even more generally such that \/ﬁTL”;—“ tends towards 0.

We arrive at the same result for series of the form:

Z anneingo(n)’

©(n) being such that n|p(n + 1) — ¢(n)| tends towards 0, ¢(n) — 2kxw varying
constantly between 0 and 27 when n increases indefinitely; which takes place in

particular if ¢(n) increases indefinitely, ny’(n) tending towards 0.

Similarly in the series

n na+inp(n
E :Z D€ o )7

Wnt1—Wwy has for limit the values between —a and +«; and if a < 7, this reasoning

only applies to a portion of the circle of convergence.

7. If the series contains a sequence of terms such that % has, for n = oo, an
upper limit smaller than 0, we can suppress them, and there is no longer need to take
Llam|

account, of their signs. Suppose that, for a sequence of values of m such that

tends towards 0, there remain between a,,+x,, only ¢ terms, % tending towards 0. By
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making the substitution z = 2, the real parts of the coefficients of the new series
will have at most ¢ sign changes in the same interval, and the point 2’ = 1, z = ™
will be singular whatever w.

If, for a sequence of values of m, there remain between a,, and a1, only g

Llan|

2l where n remains between m(1 + \') and

terms, < tending towards 0, and if

m(1+ X —X), has upper limit 0, all points of the circle of convergence are singular.

This takes place, in particular, for the series

g ez,

where ¢,11 — ¢, increases indefinitely with v, and even if, p being a fixed number,
Cutp — €, increases indefinitely, and indeed in the more general case where ¢, — ¢,
increases indefinitely, except for terms such that, between ¢, and (1+ \)c,, there are
only an infinitely small number compared to c,, when v increases indefinitely. All

points of the circle of convergence are then singular whatever the coefficients a.

We can further multiply the series by a polynomial with variable coefficients, and

replace a,, by

bn = A()an + Alan—l +...+ A—l/a/’l’b—l/7
the coefficients A satisfying the conditions indicated in No. 4.

In particular, suppose that, for an unlimited sequence of values of m, the terms
a, between a,, and a,,_\, are such that % has an upper limit smaller than 0. We

can then suppress these terms and we will have

bm - AOCLma

bm+1 = Aol + Avay,,

382



where v = Am. We will still be sure that all points of the circle of convergence are
singular if we can choose the variable quantities A with m, such that % has upper
limit 0, the b being null, except for an infinitely small number compared to m, %

having upper limit 0 when n remains between m and m(1+ A — X).

Let 2 = 2" and A, = A/ e™'. We can recognize that the point z = ¢! is

singular if in the sequence

!/
bm — A.Oa/m,

wt / !
bm—i—l = e (A()a'm—i-l + A1a'm)a

by = € AYamiy + ...+ Alay,)

the real parts of the b have only a number of sign changes infinitely small compared to
m, the mth root of the real part of b, having upper limit 1, when n remains between
m and m(1 + X — X). And all points of the circle of convergence will be singular if

these conditions can be satisfied whatever w, the A being able to vary with w.

This is what takes place, for example, if, for an unlimited sequence of values of

m, Gm-1 = Gm-2 = .. = AGm-xm = 0, QmlGmi1-..Amixn being real, positive and
. . . . wt
decreasing, v/a,, tending towards 1. Indeed, if we take Ay = A1 =... = A, = —ie>2

and z = 2'e™*, we will have

wt . .
. = t t
bm—i—l/ = —e?2 (am + am—&-lezw +...+ am—&-l/eww )

and the real part of b,,,, is equal to

. w . dw D 2v+1
am51n§+am+181n——|—...+am+l,sm

w
2 2

1 . g W . 9 OW
= Ay — Qg SIn” — + (Gpa1 — G siIn” — + ...
sin = ( +1) 5 (@mt1 +2) 7 +
.9 21w L 92 +1
+H(Amav—1 — Qmay) Sin 5 + Ay Sin 5w
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1, provided that sin § is not null.

an expression whose terms all have the sign of sin §, and }/|a,, sin §| will tend towards

two polynomials.

We thus arrive at the same result in the more general case where we can determine
the quantities A such that the b are real, positive and decreasing, 3/b,, tending
towards 1, b,,—1, by_a, ...

s bm—m being null; because we can multiply successively by

8. To obtain new applications of the established theorems in §2 and 3, we will

now calculate the order of magnitude of the coefficients of ¢,,(t) when m becomes

infinite, supposing ¢ = £, p being an integer that varies with m, such that ¢ remains
between two fixed limits between 0 and 1. We then have

v

:ZLH%

Sm+1)...(m+v)
L SR S P

=1 1+E
1—t 1-t2 K, 11—
=—— T+ —5 e — A S
mt - 2m2t221: 3m3t321:
or
11—t 1 —¢*!
n

3 and 2::]}”<VZ::ZL’”1.

Consequently, the ratio of two consecutive terms

1—t" n—1 Xz"
1 —¢n1

nt Yan—l
is smaller than # < % < 1if A < t. We thus have

Ltu(m+1)...(m+u)

<_1—t
p+1)...(p+v)

1

2mt V(v +1)

1-tv(v+1)(2v+1) 1—t

+ < -
2m?2t2 6

Sy viv+1)(1 — a),
a being able to be as small as we wish if A is small enough.
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Similarly

1 plp—1)...(p—v+1) &S 1-2 1t 1-£2&
L- SN L2 - S TUNT 2
pm(m—1)...(m—v+1) 1-£ mt Zx m?t? Zx *
z=1 m 1 1
1-1¢ 1-1
- viv—1) < — viv+1)(1 - a),

2mt 2mt

provided that v > 2%‘)‘
Let i=£(1—a) = k. The coefficient of a4, in ¢, (t) is smaller than ekt

1—¢ _pv(w4l)
Fame?@=1 and smaller than e *~ = if v >

, and

v—1 2—«a

that of a,,_, is smaller than e~

The sum of coefficients that follow that of a,, , is smaller than

m

_ V/(V/Jrl) o0 _ z(z+1) _ v(v+1) o0 _ z(z+2v+1)
E e < e T de = e e de
v'=v+1 v 0
o
g v(v+l) _px(22+1) m . v(v+l)
<etm e dr = ———e
0 kE(2v + 1)

We also have

o0 o0
o a(a+l) L v(vt1) a2 1 /mm _,ve+)
e T dr < e e Mmde == —e*m
Y 0 2 k

an expression that is smaller than the preceding if v < (/> — %

The sum of coefficients situated beyond that of a,,_, is smaller than

m 1—t & 1—t > z(xz—1)
E e mme (@) </ e_2mt$(z_1)dx</ e F T dx,
v 14

r=v+1

ifv > 277"‘ Butif 0 <v < Q’Ta, the difference of the last two
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integrals is always smaller than

/a e 2mtz(x 1)d$ . /a 67%(17a)(mfl)dx
0 0

1 1 a
:/ e—é;li:v(x—l)d$+/ e‘lﬁ(l_a)x(x_l)dx%—/ e 2mi (@1 gy
0 0 0

)

an expression that remains negative if m is large enough.

:/ e 2mt[1 a2lj 1]d1‘<€2mt
0

Therefore the sum of coefficients coming after that of a,,_,, similarly that the
sum of those that follow that of @, 1., is smaller than the smaller of the expressions

m LA G D R N T v(v+1) +1) ﬂ-m
e I Ve . And the sum of all coefficients is smaller than /%

In ¢,,(t) suppose the quantities a, replaced by the real part a, of a,e="*. If we
consider terms such that |a'| < A, their sum will be smaller than A,/%*. If these

ku(u-{»l)

the sum will be smaller than A 22 e~ %=

terms are not between a,, ,,, v

9. Let, for an unlimited sequence of values of m, A,, be a positive quantity,
variable with m, such that LAT"‘ tends towards 0. Suppose that there exist in ,,(¢)
terms such that |a,,,| ﬁ remains smaller than a given quantity. Let v be a
variable number with m, that we can suppose larger than y/m; suppose there exist

terms, not between aj, -, ,

a < —‘ remains equally finite. In the case

where does not tend towards 0, it suffices even that 7L ’A—’ remains finite.

vmLm
We can always choose k large enough, or ¢ small enough, so that the sum of all these
terms in ,,(t) is smaller than A,, multiplied by a fixed quantity 6 as small as we

wish.
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Let €, be the largest of the quantities %L ‘axﬁ , where v < Am; when m becomes

infinite, €, tends towards 0. If ¢, < me, suppose v > v HmLm, we then have

- 3
AT

a m

A, v

m

L

2

If e, > me and v > m+/He,,, we will have

1 R
mHz, |7 T N THe,, | T MH

a m

—| <
A, v

m

L

V2

Therefore, H being a fixed quantity that can be very small, the group of terms
that we are considering will comprise all those for which v is greater than the larger
of the two quantities m~/He,,, vVHmLm. We can still, after having removed terms
such that ﬁm‘ or 5L

same sign by the method of n® 3. Let ai,as,...,a, be the absolute values of the

:—' X %‘ remains finite, search to make the others of the

numbers £, that correspond to sign changes of the terms a, , or a;, , that we

have kept between a,,4+x,. Supposing that % tends towards 0, we have seen that we
can form a function v¥,,(t) having all its terms positive, the first a/, being multiplied
by the factor

2 q
COS (¥1 COS (g . . . COS Oy > (@) Hipto - .. Hq;
or
v T x q
L L et Lpg > L—- > L—dx =qL=- — 2
p + Lpg + ..o+ Lt ;3/1395 CIBQ+
and

q q
cosalcosag...cosaq>( ) )
Texm

But we can obtain a function t,,(t) for which this first term will have a larger

value. Let € be a quantity that tends towards 0, but also slowly enough that we want,

1

for example € = 5~ or m The numbers (i1, p12, . . ., ptg being arranged in order of
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increasing magnitude, let us form the sequence g, %, . % Let h be the number
of these quantities greater than ¢, and the first that is smaller than e, so that
v > h. For the ¢ — h values of i such that < g, let us make correspond the arc
wy; = 7~ X +; then pw remains smaller than T and Yw<(g—h)Z 4€ < me. For the h

other values of w, let us make correspond the arc wy = F&, which gives

s h
—ely < T Hn < and Yw < —me < Te.

e
nW o
Hntr =7 A, 3 q

Thus Yw tends towards 0, and pw; remains smaller than Z. We then have

Y A N = e
ZLcosoz> ZL (;E) +ZL (%8%)

q—h
_qL——(q—h)Lq+hL +ZLn+ZLun

The sign Zh applying to the ¢ — h values of n such that Min < g, the sign Zq_h
to the h values of n such that o > €. But p, < 7 and

q—h

ZLn+ZLun>ZLn—th—q+hL2

n=1

2

ZLcosa > —q <1+Lg) —i—hL%

and

2\? se\h £\¢
COS (1] COS Qg ... COS Yy > | — (—> > (—) )
Te 2 e

al . being supposed positive, ¢/, (t) will be larger than

) (2) o
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and we will be sure that the point z = 1 is singular if we can determine ¢ tend-
ing towards 0, such that Zﬁ (E)q (l)q does not tend towards 0, that is to say if

2 e
é <L% — qL%) increases indefinitely, through positive values. This happens, in

. . /. . .
particular, if %LA‘I— increases indefinitely.
m

We can still apply here the principles of n° 5. We will first remove terms such that
ﬁ\/m‘ or L

arc [ such that ¢ is minimum. If %L

A= X 21 remains finite. For each value of m, we will determine the

v cos(wp, — 5)‘ increases indefinitely, for an

unlimited sequence of values of m, the point z = € is singular. In the case where

% tends towards 0, the point z = 1 is still singular if éL y v cos(wy, — B)| remains

larger than a quantity greater than L7F.

10. If, after having removed terms such that

Alm\/m‘ or 5L
finite, there remain in ¢.,(t) only ¢ terms, L tending towards 0, making the substi-

AL X m‘ remains
m 12

tution z = eiweit, the real parts of the terms kept in the new series will have at most ¢

sign changes; and, if %L 42| increases indefinitely, the point z = e™ will be singular

whatever w may be.

We arrive at even more general results by noting that, to form here the function
¥m(t) of n° 3, it suffices to make correspond to each value of p a single arc w, and the
arc o = 5 F puw, such that cos(aFpw) = 0. a5, representing the terms kept in ¢y, (1),

suppose the p divided into three groups: the first such that > i tends towards 0; to
5
towards 0. g1, o, . . ., i, being the other values arranged in order of magnitude, the

these values we will make correspond the arc w = so that cosa = 1, Yw tending

second group will comprise the ¢’ — h values of u such that ul < g, and the third the

h values such that uﬂ > ¢. ¢ is still a quantity that tends towards 0 when m becomes
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infinite. For the terms of the third group we take

T €
W= —-+—
3 q
and for the second
T " n
Ww=— X —.
3¢ pn

Then piw remains smaller than Z and ) w < Ze tends towards 0. We still have

! " / "
. TN . TEly n Efln €
E Lcosa = E Lsmg—q/—l— E L sin 3¢ > E La—i- g L ” >hL§—q/7

¢ (E\" e\?
COS (V] COS (v . .. COS Quy > € <—> > <—> .
I 3 3e
The function 1, (t) then reduces to the single term a,, cos a; cos as . . . cos oy and

the neglected terms have a sum smaller than A,,.

If % (L Z—z‘ —q ) increases indefinitely, we can take
e 1 a
L-=—-(Ld+q¢—-L|-2|].
37 h ( TTETRA, )

Then ¢ tends towards 0 and we can suppose

Am

!
h<q = A

h !
() % and ()] > Auld ~ ).

All points of the circle of convergence are then singular. This happens, in partic-

a1 am,
ular, if ?L i

increases indefinitely; or if| Z—,/ tending towards 0, iL ‘j—m’ remains
greater than a quantity larger than 1.

All points of the circle of convergence are still singular if A = 0, L !

am
A, — 4
remaining greater than a given quantity that can be negative; and finally, in the case

where ¢’ =0,

Z—:”n’ remaining greater than a given quantity larger than 0.
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We can note that ¢ = 0 in the particular case where the terms that we keep reduce

to the form > a, 2%, % increasing indefinitely with ¢,. For if m = ¢,, a., being
Cv4+1—Cu
Lcy

that increases indefinitely with v, such that, for these terms, |c,,—, — ¢,| > ApLc,;

any term of (1), also increases indefinitely, and we could find a quantity A

and as |¢,—p — 6| < Ac,, we will have

consequently,

1+L)— L(ALcy)}
< + )

ALC,, chx

an expression that tends towards 0 if A increases indefinitely or even at the same
time as ¢, .

Cy

vLv
increasing indefinitely.

This happens, for example, if increases constantly and indefinitely with v; or

Cy

e
again if % grows constantly, -5

Consider, for example, the series
; 2 2
E ST gwnt | ol cos(2mn ),

where 0 < 8 < 1, v being a commensurable number smaller than 1 and greater than

the two quantities 1 — g, #.
Let us form ¢,,(t) for values of m such that m? is an integer, and let

Am - |am| - emz;

R/ |an| then tends towards 1. N being any integer, let us divide the terms @ into two

groups, the first comprising the terms a,, such that
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Nl 1< <N;+1
== T+ =
g =" 2

For the terms of the second group we will have

N | —

1 1 1
N?+§<n<(N+1)?—

and if N is large enough, provided that 4" < 7, we will have

/

/
N + %n“’_l <n’"<N+1- %n”‘l,

cos(2mn?) < 1 —29"n —201=7),

so that for these terms

UmFv | (mFv)? 4292 (mF) 0D —m? e[xzmﬁ_w?m?fv(lfvn’
An
am v . v . .
and |=3E=/ m’ tends towards 0 if —*— remains smaller than a quantity smaller than
22
R

On the other hand, in ¢,,(t),

2 2 m
la] <™ N7 and  —L
v

A, v

will remain finite if ’””1;6 remains finite. And if v > #, we should only keep in

©m(t) the terms of the first group, which are of the form ay2°N, where s increases

constantly and indefinitely with IN.

Consequently, all points of the circle of convergence are singular.

11. To apply the preceding results, we are led to study the order of magnitude

of the coefficients a,, of the series, when m becomes infinite. Let us first consider

the terms of modulus larger than 1; Liam| ’"l tending towards 0, we can set ‘Zlm‘ = ml/a;

Llamll _ 1 _

T a remains smaller than 1,

a remaining positive if m is large enough.
but can nevertheless tend towards 1, in the case where « tends towards 0, such that

m® becomes infinite, for example, if |a,,| = eTm; so that, for terms of modulus larger
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than 1, LI;JZ;"‘ has an upper limit, for m = oo, comprised between 1 and —oo.

Let 3 be this upper limit, which we will suppose finite. We could find an unlimited
sequence of values of m such that

em,@+ B—e

T > | > e™

9

% has an upper limit that can be comprised between 0 and oo.

Let 6 be this upper limit, which we will suppose finite; there will exist terms in
infinite number such that

5 —eymf
e0ram” 5 .| > e@=m",

Similarly, if |a,,| remains smaller than 1, we could set

1 1
L—|=—,
Ay mo
LL |-L
m 1
Lm “

will have a lower limit, for m = oo, comprised between 1 and —oo. Let 3 be this

lower limit, which we suppose positive; we will have an infinite number of terms

_mbBte
)

—mB—

e T > an| > e

and ngg' will have, for m = oo, an upper limit 6 that can be comprised between 0

and —oo.

In these two cases, we will form ¢,,(t) for a sequence of values of m such that

6(6+s)m5 (0—e)mP ’

> |an,| > e

0 being the upper limit of %, which can be positive or negative. Let A,, = '™’

0’ < 0. For all terms of ¢,,(t), we have

1 m-v —
—L ‘Zl—z <[(0+ )1+ NF —0)mP 1,
Ann. de I’Ec. Normale. 3¢ Série. Tome XIII. — October 1896. 50

393



and the quantity &, of n° 9 is of order m”~!; we can, consequently, in ¢,,(t), suppose
148

v < Hm™z . We can, moreover, remove terms such that L|au,¢,| — 6'm? + Lm
remains finite, or negative. If # — 6’ is chosen small enough, we can thus remove all

terms such that % has an upper limit 8” < 6.

Let w be an arc variable with m, and ¢ the number of sign changes of the real

part of a,e™™ for the terms kept in ¢,,(t). If

1
—L|w, —w— T_ km
mp 2
tends towards 0, as well as
q
mpP’

%L G cos(wm — w)| increases indefinitely, and the point z = 1 is singular.

This happens in particular if
m—+v

3 |
) Wn41 — Wn
mﬁ m—v

tends towards 0, w, corresponding to the only terms kept. And as v < Hm#, we

can be sure that the point z = 1 is singular if, for these terms,

1-8
2

|wpr — wy|n

tends towards 0, @/ and a,, being two consecutive terms.
? n

Similarly, if

m-+v

1
3 Z ‘wn-ﬁ—l — Wp — w’
m? m—v

tends towards 0, the point z = e™™ is singular, a/, and a, being two consecutive

Z lwni1 — wn — W)

terms,
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is here replaced by

lwnr — wn — (0 — 0w + 2k,
this arc being comprised between —m and +.

These conditions can be fulfilled for several points and, in certain cases, for all the
circle of convergence. m being always such that % tends towards 6, let us suppose

removed terms such that % has an upper limit 8’ < 6 and those such that
m m
— [L|a| —0'm” + L—
v v

remains finite, which allows us to suppose v < Hm™s". Let us divide the terms that

remain in ¢,,(t) into three groups as in n° 10. We will be sure that all points of the

circle of convergence are singular if TZ—% remains smaller than a quantity smaller than

0—¢, # tending towards 0, for an unlimited sequence of values of m considered.
o

This happens, for example, if we can choose 6 — ¢ small enough so that -5 tends

towards 0.

Suppose, for example, that after having removed terms such that % has an
upper limit smaller than 6, we separate the others into two groups, the first of which

will be of the form Xa, 2z,
Coy1 — Gy
Lc,
increasing indefinitely. We will conclude that all points of the circle of convergence
are singular if, for a sequence of values of m such that % tends towards 6, there
remain between a 145 only ¢ terms of the second group, q—lﬁ tending towards
mFHm 2~ m

0. 6 can here represent the upper limit of % for a partial sequence of values of n

comprised between m — Am and m + Am.
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Consider, as an application, the series

n wnz n? cos?™ (mn7)
§ z ’

where 0 < 8 < 1, v being a number comprised between % and 1, which we will

suppose commensurable to simplify the reasoning. If n” is an integer,

L|a,| = n”.

If we form, as in n° 10, terms such that

1 1
N%+Z—L<n<(N+1)%—Z,

we deduce

cos?(mn) < (1 — }17’2712(71))2” < e

?

which tends towards 0, and for these terms LL‘%”' has upper limit 0, for n = oo; the

other terms are such that . )
1 1

N — - <n<N~»+ =

2 + 2’

if n = en, % increases indefinitely, and % has upper limit 1. All points of

the circle of convergence are therefore singular.

If % has upper limit 1, # = 0. We can then remove terms such that % has
an upper limit smaller than 1, and if between a,, and a,, 2, there remain ¢ terms,

< tending towards 0, all points of the circle of convergence are singular.

12. If LL'“"‘ has upper limit 0, l“”‘ will have an upper limit that can be comprised

between 0 and +oo. Similarly, if |an| remains smaller than 1, % has lower limit

0, L|La"| could have an upper limit comprised between 0 and —oo.
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In general, suppose that % has an upper limit 8 comprised between —oo and

+00; so that, for a sequence of values of m, we have

mPrE > |a,| > mPe.

Let A,, = m”, B < . By choosing 3 — 3’ small enough, we could remove from
©m(t) all terms such that % has an upper limit 8" < 8 — % And 'L

remain finite for v < vVHmLm, so that, in ¢,,(t), we can suppose v < vHmLm.

If the real parts of a,e ™!, for the terms that remain, have ¢ sign changes, and if
L|wmfw7gikﬂ'|
Lm
in particular, if £~ >~ |wy41 — wy| tends towards 0, and, consequently, if %\ /{=

a m :
A V‘ will

and 7L tend towards 0, the point z = 1 is singular. This happens,

tends towards 0, a, and a,, being two consecutive terms kept. If ﬁ > |wns1 —wn —w|

tends towards 0, the point z = e~ is singular.

Let a sequence of values of m such that % tends towards [, 8 being the upper
Ljan|
Ln

m—+ Am. Let us suppose removed terms such that % has an upper limit 5’ < 8 — %

limit, for n = oo, of , at least when n remains comprised between m — Am and

and those such that 7 (L|a| — B'Lm + L%) remains finite, which allows us to suppose

v < vHmLm; then let us divide the terms that remain into three groups, as in n° 10.

We will be sure that all points of the circle of convergence are singular if % remains
1 _h

smaller than a quantity smaller than 3 — ' — 3, ;- tending towards 0. This happens,

in particular, if 5 — 8’ — % can be chosen small enough so that % tends towards 0.
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This is the case, for example, of the series
E 2"ert P cos® (mn?),

where
5> 1, 1>v> 1.
2 2

We can note that the number 5 + 1 is that which, according to M. Hadamard,
gives the order of the function on the circle of convergence. And the application of
the preceding method comes down to searching for singular points of maximum order,
and the cases where all points of the circle of convergence are of order 5+ 1. We also
see that this order is only finite in the case where % has upper limit 0; or if |a,,|
LL|

|
am

remains smaller than 1, when has lower limit 0. In other cases, which seem to
have to be considered as more general, the order on the circle of convergence is equal

to +oo.

13. A function being given, if we develop it in series following the powers of z — a,
a being arbitrary, there will generally be only one singular point on the circle of con-
vergence, and the analytical prolongation is possible, except in extremely particular
cases; but if we suppose the coefficients a of the series > a, 2" given arbitrarily, with
the sole condition that the radius of convergence is neither null nor infinite, the cases
where analytical prolongation is impossible are much more general, and we can even
wonder if the cases where the function can extend beyond the circle of convergence
should not be considered as an exception. To properly specify the question, it would
be necessary to make determined conventions on the way to appreciate the order of
generality of the series and the coefficients a,, when n becomes very large. The results
that I have obtained do not seem to me, moreover, of a nature to resolve this question
definitively; but I believe I should nevertheless point them out now by showing to

what extent the result seems probable.
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If the radius of convergence is 1, it seems natural to consider as the most general

the series in which |a,| can have, when n is very large, the largest possible variations.

h L\an\

We will then have series for whic will have an upper limit 5 comprised between

0 and 1, | "' having upper limit for limit.

L|an|

Suppose separated the terms such that remains greater than ¢’ < 6; it seems

natural to consider as the most general the case where the number of terms of this
group, comprised between a, and a,, is infinitely small compared to n’ — n. We
have seen that all points of the circle of convergence are singular in the case where,

between a 115 and a 115, the terms of this group can be divided into two,
n—Hn 2" n+HnT
Cy41—
Lc,

interval, == - n 52 , the others in number en?.

some of the form Ya, z%,  increasing indefinitely, whose number can be, in this

The series thus obtained are already very general, without being able to consider
them as the most general. But they have been formed by comparing the value of ¢, (%)
at a point anywhere on the circle of convergence to e 'We could form series such
that ¢,,(t) has at each point of this circle a value of a variable order of magnitude,

which would be even more general.

In summary, we come to form much more general series than those already known,
which cannot be prolonged analytically; and there is reason to think that we can form
even more general ones. Consequently, without being able to affirm definitively, it
seems probable that the most general series are those whose analytical prolongation

is impossible.
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