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1. An analytic function of the imaginary variable z being given, if we develop it

following the powers of z − a, the circle of convergence generally passes through a

single singular point, the one that is closest to point a.

If, on the contrary, the coefficients of the series
∑∞

0 anz
n are chosen arbitrarily,

in such a way however that the radius of convergence is neither null nor infinite,

the function defined by this series has at least one singular point on the circle of

convergence, but in general it has several. In a Memoir on functions given by their

Taylor development (Journal de Liouville, 4th series, vol. VIII), M. Hadamard has

given important results on the search for these singular points. I propose to generalize

some of these results and to deduce from them new methods particularly for searching

if a point on the circle of convergence is singular. In many of these methods, even

all the points of the circle of convergence are singular, which allows the formation of

series, much more general than those currently common, which cannot be analytically

prolonged beyond the circle of convergence.

∗Sur les points singuliers d’une fonction donnée par son développement en série et l’impossibilité
du prolongement analytique dans des cas très généraux. Annales scientifiques de l’É.N.S. 3e série,
tome 13 (1896), p. 367–399. Translated by V. T. Toth utilizing Claude (Anthropic, Inc.) AI
technology.
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2. Let

f(z) = a0 + a1z + . . .+ anz
n + . . .

be a series whose circle of convergence has radius 1, that is to say, as M. Hadamard

showed, such that the upper limit, for m = ∞, of n
√

|an| is equal to 1, or that of L|an|
n

is equal to 0. Let us form

fn(t)

1.2 . . . n
= an + an+1t

n+ 1

1
+ . . .+ an+pt

p (n+ 1)(n+ 2) . . . (n+ p)

1.2 . . . p
+ . . . ,

where t is real and between 0 and 1.

If z = 1 is not a singular point of f(z), the upper limit, for n = ∞, of n

√
f (n)(1)
1.2...n

is

smaller than 1
1−t

. If z = 1 is singular, it is equal to 1
1−t

.

The coefficients tp (n+1)...(n+p)
1.2...p

increase as long as p < nt
1−t

, then decrease constantly.

The largest corresponds to the value of p such that

nt

1− t
− 1 ≤ p <

nt

1− t
.

More generally, let us give p a value such that p
n
has for limit t

1−t
, when n increases

indefinitely.

The use of the asymptotic value of the function Γ(n) shows that the nth root of

this coefficient has for limit 1
1−t

. Indeed, we have,

L
n+ p

p
+

∫ n

1

L
n+ x

x
dx < L

n+ 1

1

+ L
n+ 2

2
+ . . .+ L

n+ p

p
≤ L(n+ 1) +

∫ p

1

L
n+ x

x
dx,

L
n+ p

n+ 1
+
p

n
L

(
n+ p

p

)
+

1

n
L

n+ p

p(n+ 1)

<
1

n
L

[
(n+ 1)(n+ 2) . . . (n+ p)

1.2 . . . p
ρp
]
< L

n+ p

n+ 1
+
p

n
L

(
n+ pt

p

)
.
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If p increases indefinitely with n, in such a way that p
n
has for limit t

1−t
, the two

extreme members have the same limit L 1
1−t

and n

√
tp (n+1)...(n+p)

1.2...p
tends towards 1

1−t
.

Dividing by this coefficient, and setting p+ n = m. Let

φm(t) = am + am+1t
m+ 1

p+ 1
+ am+2t

2 (m+ 1)(m+ 2)

(p+ 1)(p+ 2)
+ . . .

+ am+νt
ν (m+ 1) . . . (m+ ν)

(p+ 1) . . . (p+ ν)
+ . . .

+ am−1
1

m
t−1 + . . .+ am−p

1

tp
p!(p− 1) . . . 1

m(m− 1) . . . (m− p+ 1)
,

where p increases with m, in such a way that p
m

tends towards t.

If z = 1 is not a singular point of f(z), n
√
|φm(t)| has an upper limit smaller than

1, and as m
n
has a positive limit, 1

1−t
, the same is true for m

√
|φm(t)|.

If z = 1 is singular, the upper limit of n
√
|φm(t)|, and also that of m

√
|φm(t)|, is

equal to 1 if, when m increases indefinitely, n = m − p passes through all integer

values; which takes place, for example, if we take the number p between mt and

mt− 1.

But if ν ≥ λm, λ being a fixed quantity also small as we wish, it is useless to take

into account the terms of φm(t) that follow am+νt
ν . Indeed, if n is large enough,

|an| < (1 + ε)n (1)

and the ratio tm+ν
p+ν

of two consecutive coefficients decreases when ν increases. The

sum of the terms of φm(t) that follow am+νt
ν will therefore have a modulus smaller

than

(1+ε)m+νtν
(m+ 1) . . . (m+ ν)

(p+ 1) . . . (p+ ν)

[
1 + t(1 + ε)

m+ ν + 1

p+ ν + 1
+

(
t(1 + ε)

m+ ν + 1

p+ ν + 1

)2

+ . . .

]
,

1ε represents here, and will represent in the following, a positive quantity that can be chosen as
small as we wish, if n is large enough.
Ann. de l’Éc. Normale. 3e Série. Tome XIII. October 1896. 47
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where λm ≤ ν < λm + 1. If ε is small enough and m large enough, the ratio of

this geometric progression will differ as little as we wish from t1+λ
1+λ

, which is smaller

than 1. The mth root of the progression therefore tends towards 1, if m becomes

infinite. On the other hand

L
(m+ 1)(m+ 2) . . . (m+ ν)

(p+ 1)(p+ 2) . . . (p+ ν)
<

∫ ν

0

L
m+ x

p+ x
dx

= (m+ ν)L
m+ ν

m
− (p+ ν)L

p+ ν

p
+ νL

m

p
,

1

m
L

[
(1 + ε)m+νtν

(m+ 1) . . . (m+ ν)

(p+ 1) . . . (p+ ν)

]

<
m+ ν

m
L
(1 + ε)(m+ ν)

m
− p+ ν

m
L
p+ ν

p
+
ν

m
L
mt

p
,

whose limit is

(1 + λ)L(1 + ε) + (1 + λ)L(1 + λ)− (t+ λ)L

(
1 +

λ

t

)
.

This expression increases with t, and for t = 1 reduces to the first term, which is

as small as we wish. Therefore, if t < 1, and if ε is small enough, it will be negative,

and the mth root of the modulus of the sum of terms that follow am+ν has an upper

limit, for m = ∞, smaller than 1.

Similarly, if λ < t, the sum of terms between am−p and am−ν has a modulus smaller

than

(1 + ε)m−ν 1

tν
p(p− 1) . . . (p− ν + 1)

m(m− 1) . . . (m− ν + 1)

×

[
1 +

p− ν

t(1 + ε)(m− ν)
+

(
p− ν

t(1 + ε)(m− ν)

)2

+ . . .+

(
p− ν

t(1 + ε)(m− ν)

)p−ν
]
;

the ratio of this progression will differ as little as we wish from t−λ
t(1−λ)

, which is
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smaller than 1, and

L
p(p− 1) . . . (p− ν + 1)

m(m− 1) . . . (m− ν + 1)
< L

p

m
+

∫ ν−1

0

L
p− x

m− x
dx

= (m− ν + 1)L
m− ν + 1

m
− (p− ν + 1)L

p− ν + 1

p
+ νL

p

m
,

1

m
L

[
(1 + ε)m−ν 1

tν
p(p− 1) . . . (p− ν + 1)

m(m− 1) . . . (m− ν + 1)

]
<
m− ν

m
L(1 + ε)

+
m− ν + 1

m
L
m− ν + 1

m
− p− ν + 1

m
L
p− ν + 1

p
+
ν

m
L
p

mt
,

whose limit

(1− λ)L(1 + ε) + (1− λ)L(1− λ)− (t− λ)L

(
1− λ

t

)

is negative, if t < 1, and if ε is small enough.

Therefore, if in φm(t) we keep only the terms between am−ν and am+ν , the modulus

of the sum of the suppressed terms will have anmth root inferior to a quantity smaller

than 1, provided that m is large enough; and these terms will have no influence on

the result stated, which leads to the following theorem:

Let

φm(t) = am + am+1t
m+ 1

p+ 1
+ . . .+ am+νt

ν (m+ 1) . . . (m+ ν)

(p+ 1) . . . (p+ ν)

+am−1
1

t

p

m
+ . . .+ am−ν

1

tν
p(p− 1) . . . (p− ν + 1)

m(m− 1) . . . (m− ν + 1)
,

where p is an integer varying with m in such a way that p
m

tends towards 1, and

ν ≥ λm, 0 < λ < t < 1. If z = 1 is not a singular point of f(z), the upper limit, for

m = ∞, of m
√

|φm(t)| is smaller than 1; and if this upper limit is 1, the point z = 1

is singular.

t is here an arbitrary quantity, which can vary withm, provided it remains between

two fixed limits between 0 and 1, and that p
m

tends towards 1. We can, for example,

suppose t = p
m
.

Reciprocally if, t remaining fixed, p varies in such a way that m−p passes through
all integer values, for example if p is between mt−1 and mt, and if z = 1 is a singular

point, m
√

|φm(t)| has upper limit 1; if this upper limit is smaller than 1, the point z = 1
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is not singular.

If we set an = e2i(a
′
n+ia′′n), a′ and a′′ being real, φm(t) takes the form e2i(φ

′
m+iφ′′

m),

and the upper limit of m
√
|φm(t)| is equal to the largest of the upper limits of |φ′

m|
m

and |φ′′
m|
m

. If, in φm(t), we replace the terms an by the real part of ane
−2iα, we see

that, if the point z = 1 is not singular, m
√
|φ′

m| will still have an upper limit smaller

than 1, whatever α may be, which can thus vary with m. If m
√

|φ′
m| has upper limit

1, the point z = 1 is singular.

3. Let z = teiθ; if m
√
|φm(teiθ)| has upper limit 1, the point z = eiθ is singular.

If, on an arc between −Ω and +Ω, there is no singular point, this root eiθmω has an

upper limit smaller than 1, provided that −Ω < ω < +Ω, and the mth root of

1

n
|e2iαφm(te

iω1) + e2iβφm(te
iω2) + . . .+ e2iγφm(te

iωn)|

will also have an upper limit smaller than 1, whatever the arcs α. If this upper

limit is 1, there will be at least one singular point on the arc ±Ω.

If the arcs ω1, ω2, ..., ωn vary with m, in such a way that |ω| has, for m = ∞,

an upper limit Ω, and if m

√
1
n
Σe2iαφ(teiω) has upper limit 1, there will be a singular

point on the arc ±(Ω+ε). And if all the ω tend towards zero, there will be a singular

point on the arc ±ε, ε being as small as we wish; the point z = 1 will therefore be

singular.

Let n positive arcs ω1, ω2, ..., ωn, Ω their sum, and α1, α2, ..., αn arbitrary arcs.

We have

cos(α1 + νω1) cos(α2 + νω2) . . . cos(αn + νωn)

=
1

2n
{ei(α1+νω1) + e−i(α1+νω1)} . . . {ei(αn+νωn) + e−i(αn+νωn)}

=
1

2n
Σei[±(α1+νω1)±(α2+νω2)±...±(αn+νωn)],
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the sign Σ comprising the 2n terms obtained by the permutation of the n signs ±.

Each of these terms is of the form

ei(α+νω)

where

|ω| ≤ Ω.

In φm(te
iω), let us take for ω the 2n values ±ω1 ± ω2 ± . . . ± ωn, and for α the

corresponding values. Then let

ψm(t) =
1

2n
Σeiαφm(te

iω)

= am cosα1 cosα2 . . . cosαn + . . .

+am+νe
ν (m+ 1) . . . (m+ ν)

(p+ 1) . . . (p+ ν)
cos(α1 + νω1) . . . cos(αn + νωn)

+am−1
1

t

p

m
cos(α1 − ω1) . . . cos(αn − ωn) . . .

+am−ν
1

tν
p(p− 1) . . . (p− ν + 1)

m(m− 1) . . . (m− ν + 1)
cos(α1 − νω1) . . . cos(αn − νωn).

If ω1+ω2+ . . .+ωn tends towards 0, and if m
√
|ψm(t)| has upper limit 1, the point

z = 1 will be singular.

Suppose the terms an replaced by the real part a′n of ane
−iβnt, βm being able

to vary with m, and let us seek to determine the arcs α and ω in such a way that

the terms of ψm(t) are all of the same sign. If this can take place for an unlimited

sequence of values of m such that m
√

|a′m| tends towards 1, ω1 + ω2 + . . . + ωn and
1
m
L| cosα1 cosα2 . . . cosαn| tending towards 0, the point z = 1 will be singular, be-

cause m
√

|a′m cosα1 cosα2 . . . cosαn| will tend towards 1 for these values of m, and the

other terms of ψm(t) add to the first.

Let

ν =
π

2
= µω1,

µ being a positive or negative integer; then

ωn =
ω1

2n−1
, αn = −µωn, where n = 2, 3, . . .
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cos(α1 + νω1) changes sign for the values

ν = µ+ k′
π

ω1

and cos(αn + νωn) for

ν = µ+ (2k + 1)2n−2 π

ω1

= µ+ k′
π

ω1

.

If k′ = 0, cos(α1 + νω1) is only null. If k′ is divisible by 2n−2, the quotient being

even, cos(αn+νω2) also cancels and the product cos(α1+νω1) cos(α2+νω2) . . . cos(αn+

νωn) changes sign for ν = µ, and has no other sign change between the values ν =

µ ± π
ω1
2n−1. As in φm(t) we can suppose |ν| ≤ λm, it suffices to choose n such that

π
ω1
2n−1 is larger than λm+ |µ|. We then have

ω1 + ω2 + . . .+ ωn < 2ω1

and

cosα1 cosα2 . . . cosαn = sinµω1 cos
µω1

2
cos

µω1

22
. . . cos

µω1

2n−1

=
sinµω1

2n−1

2n−1∑
k=2n−1

e
iµω1|2k+1|

2n =
sin2 µω1

2n−1 sin
(
µω1

2n

) ,
and, if we suppose

0 < |µω1| <
π

4
,

we deduce

| cosα1 cosα2 . . . cosαn| >
sin2 µω1

|µω1|
≥ 4

π2
|µω1|.

a′m being supposed positive, let a′m+ν1
, a′m+ν2

, ..., a′m+νq be the first negative terms,

then a′m+νq+1
, a′m+νq+2

, ..., the first following terms that are still positive, and so on,

a′m+ν1
, a′m+ν2

, ..., a′m+νq and a′m−ν1
, a′m−ν2

, ..., a′m−νq being the terms that change sign

between a′m−λm and a′m+λm. Let us take successively for ν the values ν1, ν2, ..., νq,

then −ν ′1, ..., −ν ′q, ω1 keeping the same value ω1 = π
2λm

. Then |µω| remains smaller

than π
2
; and if q+q′

m
tends towards 0, Σω < π q+q′

λm
will also tend towards 0.
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On the other hand, we have

0 >
1

m
ΣL| cosα| > 1

m
ΣL

∣∣∣∣ 4π2
µω1

∣∣∣∣ = q + q′

m
L

2

πλm
+

1

m
ΣL|µ|

and

ΣL|ν1|+ L(1.2 . . . q) + L(1.2 . . . q′) >

∫ q

1

Lx dx+

∫ q′

1

Lx dx

= qLq + q′Lq′ − q − q′ + 2.

Therefore

1

m
ΣL| cosα| > q + q′

m

(
L

2

πλ
− 1

)
− q

m
L
m

q
− q′

m
L
m

q′
,

an expression that tends towards 0 at the same time as q+q′

m
. We thus arrive at

the following theorem:

βm being a variable arc, let q be the number of sign changes of the real part a′n of

ane
−iβnt, when n varies from m − λm to m + λm. If, for an unlimited sequence of

values of m, 1
m
L|a′m| and

q
m

tend towards 0, the point z = 1 is singular.

Suppose that between a′m and a′m+λm the number of sign changes is infinitely small

compared tom; this theorem applies if 1
n
L|a′n| tends towards 0 for a sequence of values

of n between each m(1+ λ′) and m(1+ λ−λ′) where 0 < λ′ < λ; that is to say, if for

all these values of n, 1
n
L|a′n| has upper limit 0. If, on the contrary, this upper limit

is smaller than 0, we can suppress a′nz
n without changing the singular points of the

circle of convergence: so that the terms between am+λ′m and am+λ−λ′m reduce to the

form a′′nte
iβnt.

4. We can further generalize this result by multiplying the series by a polynomial

P (z); if the point z = 1 is singular for the function P(z) × f(z), it is singular for

f(z). The degree of this polynomial can even increase indefinitely. Suppose, indeed,

that z = 1 is not singular; we could find a fixed quantity θ such that
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∣∣∣∣ fn(t)

1.2 . . . n

∣∣∣∣ < (
1− θ

1− t

)n

,

provided that n is large enough. Let

P(z) = A0 +A1z +A2z
2 + . . .+Aνz

ν ,

Q(z) = A(1 + z + z2 + . . .+ zν),

the coefficients A0, A1, ..., Aν having moduli smaller than A, and ν being such

that n− ν increases indefinitely with n. We have

1

1.2 . . . n

dnP(t)f(t)

dtn

=
fn(t)

1.2 . . . n
P (t) +

fn−1(t)

1.2 . . . (n− 1)

P′(t)

1
+ . . .+

f (n−ν)(t)

1.2 . . . (n− ν)

P(ν)(t)

1.2 . . . ν
,∣∣∣∣ 1

1.2 . . . n

dnP(t)f(t)

dtn

∣∣∣∣ < (
1− θ

1− t

)n [
Q(t) +

1− θ

1− t
Q′(t) + . . .+

(
1− θ

1− t

)ν
Q(ν)(t)

1.2 . . . ν

]
=

(
1− θ

1− t

)n

Q

(
t+

1− θ

1− t

)
<

(
1− θ

1− t

)n

A
θ(1− t)

(1− θ)

(
1− θt

1− t

)ν

< A
θ(1− t)

(1− θ)

(
1− θt

1− t

)ν

,

whose nth root has an upper limit, for n = ∞, smaller than 1
1−t

, if n
√
A has upper

limit 1.

Let us set, as in No. 2, n + p = m, p
mt

tending towards 1, and form the function

φm(t), where each coefficient an is replaced by

bn = A0an +A1an−1 + . . .+Aνan−ν ,

L|A|
m

having upper limit 0 for m = ∞, and ν being such that m(1 − t) + ν becomes

infinite with m. The A can thus vary with m as well as ν. We can further neglect

the non-included terms between bm−λm; and, if λ < 1− t, ν can be supposed equal to

λm.

The same reasoning applies to all points of the circle of convergence, which allows

us to perform the transformations of No. 3. Consider the sequence bmbm+1 . . . bm+ν ,

where ν = λm. If we can find variable quantities A with m, L|A|
m

having upper limit
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0 for m = ∞, such that, for an unlimited sequence of values of m, the real parts b′m,

b′m+1, ..., b
′
m+ν of the b have only a number of sign changes infinitely small compared

to m,
L|b′m+µ|

m
tending towards 0 for values of µ between each λ′m and m(λ− λ′); the

point z = 1 is singular.

Suppose that, for a sequence of values ofm, the real parts of ane
−iβnt have, between

n = m and m + λm, only a number of sign changes infinitely small compared to m.

We have seen that the point z = 1 is singular, except in the case where, by suppressing

portions of terms such that L|a′n|
n

has an upper limit smaller than 0, we obtain smaller

intervals, but such that between am and am+λ′m all terms are of the form

a′′nte
iβt.

In this case, suppose the following terms put in the form

an = eit(a′n + ia′′n),

and suppress the common factor eit. The quantities b′ simplify if the A are supposed

real. Because the a′ are null for sequences of terms that can be represented by

am−1am−2 . . . am−λm;

we then have

b′m = A0a
′
m, b′m+1 = A1a

′
m+1 + A1a

′
m, . . . , b′m+ν = Aνa

′
m+ν + . . .+ A0a

′
m,

where

ν = λm.

We can conclude that the point z = 1 is singular when we can determine the

quantities A such that the b′ have only a number of sign changes infinitely small

compared to m, 1
m
L|b′m+µ| having upper limit 0 when µ takes values between λ′m

and (λ− λ′)m.

Ann. de l’Éc. Normale. 3e Série. Tome XIII. October 1896. 48
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5. Let

an = ρne
iωnt = eit(a′n + ia′′n).

To determine the sign changes of a′n = ρn cos(ωn − β), suppose we mark, on the

circumference of radius 1, the arguments ωn of the terms between am and am+λm, by

joining the consecutive points by the shortest arc, so as to form a continuous sinuous

line. The sign of a′n will change each time this line crosses one of the points e(β+
π
2
)t.

The number q of sign changes of a′n is equal to the number of intersection points of

the preceding line with a diameter, which can be chosen to make q minimum. For

each value of m, let βm be the arc that corresponds to this minimum value of q, λ

being able to vary, but without tending towards 0.

Suppose that q
m

has lower limit 0, for m = ∞, that is to say tends towards 0 for

an unlimited sequence of values of m. We conclude that the point z = 1 is singular

if, for the values of n between m(1 + λ′) and m(1 + λ− λ′), 1
n
L|ρn cos(ωn − βm)| has

upper limit 0; that is to say if, for an unlimited sequence of these values of n, 1
n
Lρn

and 1
n
L| cos(ωn − βm)| tend towards 0.

This last expression tends towards 0 at the same time as 1
n
L|ωn − βm − π

2
± kπ|

(k being chosen so that the arc remains between −π
2
and +π

2
), and in particular

whenever

ωn − βm =
π

2
± kπ

does not tend towards 0.

For example, if, for each of these values of n, there are two arcs β and β′ such

that q
m

tends towards 0, 1
n
L|β − β′ ± kπ| tending towards 0, one of the expressions

1
n
L|ωn − β − π

2
± k′π|, 1

n
L|ωn − β′ − π

2
± k′′π| will always tend towards 0. It only

remains then to check if, for the values considered of n, 1
n
Lρn has upper limit 0. But

if this upper limit is smaller than 0, we can suppress these terms without changing

the singular points of the circle of convergence.
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Let am−1, am−2, ..., am−λm be one of the sequences of terms thus suppressed, m

taking an unlimited sequence of values. Let ν = λm, and

bm = A0am, bm+1 = A0am+1 +A1am, . . . , bm+ν = A0am+ν + . . .+Aνam,

the A being imaginary, variable with m, but such that L|A|
m

has upper limit 0. The

point z = 1 will still be singular if we can choose these quantities A such that the b

fill the conditions obtained for the a.

For example, if the A are all equal to eit, we are led to construct the polygon

whose vertices represent the quantities am, am + am+1, ..., am + am+1 + . . . + am+ν .

The real parts of bm, bm+1, ..., bm+ν change sign each time this polygon crosses the

diameter that corresponds to the directions e−i(β±π
2
)t. We can choose the diameter

that gives the number of intersection points q minimum; and, if q
m

tends towards

0, we conclude that the point z = 1 is singular, provided that, for the values of µ

between λ′m and (λ− λ′)m, 1
m
L|b′m+µ| has upper limit 0.

6. It is easy to obtain fairly general cases where these methods will show that the

point z = 1 is singular.

Form the differences |ωn+1 − ωn| between 0 and π, for the values of n between m

and m+λm. Among the diameters situated between two arcs β and β+γ, there will

be at least one cutting the line that joins the arguments in a number q of points less

than or at most equal to 1
γ

∑m+λm
n=m |ωn+1 − ωn|.

If 1
m

∑m+λm
m |ωn+1−ωn| tends towards 0, q

m
will tend towards 0 for several distinct

diameters, and we can always choose β such that 1
n
L| cos(ωn − β)| tends towards 0.

Therefore, if 1
n
L|ρn| has upper limit 0, for the values of n between m(1 + λ′) and

m(1 + λ− λ′), the point z = 1 is singular.
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If, whenm becomes infinite, |ωn+1−ωn| tends towards 0 for the values of n between

m and m+ λm, 1
m

∑m+λm
m |ωn+1 −ωn| also tends towards 0. More generally, suppose

that we divide the differences |ωn+1 − ωn| into two groups, the ones tending towards

0, the others being able to be arbitrary, 1
m

∑m+λm
m |ωn+1 − ωn| will tend towards 0 if,

in these intervals, the differences are all from the first group, except for a number q

such that q
m

tends towards 0.

In particular, if |ωn+1 − ωn| tends regularly towards 0, for all infinite values of n,

the point z = 1 is singular, because we suppose that there always exist terms such

that Lρm
m

tends towards 0.

The point z = 1 is still singular whatever ρm, if |ωn+1−ωn| tends towards 0 except

for terms such that between am and am+λm there are only q, q
m

tending towards 0 for

all infinite values of m.

Similarly, if ωn+1−ωn tends towards a limit α for an infinite sequence of values of

n, and if we can form an unlimited sequence of values of m such that between ωm and

ωm+λm there are only q differences that do not tend towards α, q
m

tending towards 0,
Lρn
n

having upper limit 0, when n takes values between m(1 + λ′) and m(1 + λ− λ′),

the point z = e−iα is singular.

This can take place for several points, and even, in certain cases, for all points of

the circle of convergence. Consider, for example, the series

∑
znρne

iω1λx

which gives

ωn+1 − ωn =
√
Ln+ 1− n+ 1√

Ln+
√
L(n+ 1)

(
1 +

1

n

)
.

If n is large enough, ωn+1 − ωn will differ as little as we wish from
√
Ln.
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On the other hand,

√
L(n+ p)−

√
Ln =

L
(
1 + p

n

)√
Ln+

√
L(n+ p)

,

which tends towards 0 if p
n
remains finite, or even if

L p
n√
Ln

tends towards 0.

Let α be an arc between 0 and 2π. Consider the sequence of values of n between

e(α+2kπ)2−2πα and e(α+2kπ)2+2πα, t tending towards 0 when k becomes infinite. ωn+1−ωn

tends towards α for all the values of n between n and n + λn, and the point e−iα

is singular whatever α, provided that 1
n
Lρn has upper limit 0 for the values of n

that correspond to each arc α. This takes place, in particular, if Lρn
n0

tends regularly

towards 0 for a sequence n1, n2, ..., nν of values of n such that nν+1

nν
remains finite, or

even more generally such that 1√
Lnν

Lnν+1

nν
tends towards 0.

We arrive at the same result for series of the form:

∑
znρne

inφ(n),

φ(n) being such that n|φ(n + 1) − φ(n)| tends towards 0, φ(n) − 2kπ varying

constantly between 0 and 2π when n increases indefinitely; which takes place in

particular if φ(n) increases indefinitely, nφ′(n) tending towards 0.

Similarly in the series

∑
znρne

inα+inφ(n),

ωn+1−ωn has for limit the values between −α and +α; and if α < π, this reasoning

only applies to a portion of the circle of convergence.

7. If the series contains a sequence of terms such that L|an|
n

has, for n = ∞, an

upper limit smaller than 0, we can suppress them, and there is no longer need to take

account of their signs. Suppose that, for a sequence of values of m such that L|am|
m

tends towards 0, there remain between am±λm only q terms, q
m

tending towards 0. By
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making the substitution z = z′eiω, the real parts of the coefficients of the new series

will have at most q sign changes in the same interval, and the point z′ = 1, z = eiω

will be singular whatever ω.

If, for a sequence of values of m, there remain between am and am+λm only q

terms, q
m

tending towards 0, and if L|an|
n

, where n remains between m(1 + λ′) and

m(1 + λ− λ′), has upper limit 0, all points of the circle of convergence are singular.

This takes place, in particular, for the series

∑
cνz

ν ,

where cν+1 − cν increases indefinitely with ν, and even if, ρ being a fixed number,

cν+ρ − cν increases indefinitely, and indeed in the more general case where cν+1 − cν

increases indefinitely, except for terms such that, between cν and (1+ λ)cν , there are

only an infinitely small number compared to cν , when ν increases indefinitely. All

points of the circle of convergence are then singular whatever the coefficients a.

We can further multiply the series by a polynomial with variable coefficients, and

replace an by

bn = A0an +A1an−1 + . . .+Aνan−ν ,

the coefficients A satisfying the conditions indicated in No. 4.

In particular, suppose that, for an unlimited sequence of values of m, the terms

an between am and am−λm are such that L|an|
n

has an upper limit smaller than 0. We

can then suppress these terms and we will have

bm = A0am,

bm+1 = A0am+1 +A1am,

. . . . . . . . . . . . . . . . . . ,

bm+ν = A0am+ν + . . .+Aνam,
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where ν = λm. We will still be sure that all points of the circle of convergence are

singular if we can choose the variable quantities A with m, such that L|A|
m

has upper

limit 0, the b being null, except for an infinitely small number compared to m, L|bn|
n

having upper limit 0 when n remains between m and m(1 + λ− λ′).

Let z = z′eiωt and Aν = A′
νe

iνωt. We can recognize that the point z = eiωt is

singular if in the sequence

bm = A′
0am,

bm+1 = eiωt(A′
0am+1 +A′

1am),

. . . . . . . . . . . . . . . . . . . . . . . . . . . ,

bm+ν = eiνωt(A′
0am+ν + . . .+A′

νam)

the real parts of the b have only a number of sign changes infinitely small compared to

m, the mth root of the real part of bn having upper limit 1, when n remains between

m and m(1 + λ − λ′). And all points of the circle of convergence will be singular if

these conditions can be satisfied whatever ω, the A being able to vary with ω.

This is what takes place, for example, if, for an unlimited sequence of values of

m, am−1 = am−2 = . . . = am−λm = 0, amam+1 . . . am+λm being real, positive and

decreasing, m
√
am tending towards 1. Indeed, if we take A0 = A1 = . . . = Aν = −ieωt

2

and z = z′eiωt, we will have

bm+ν = −ie
ωt
2 (am + am+1e

iωt + . . .+ am+νe
iνωt)

and the real part of bm+ν is equal to

am sin
ω

2
+ am+1 sin

3ω

2
+ . . .+ am+ν sin

2ν + 1

2
ω

=
1

sin ω
2

[
(am − am+1) sin

2 ω

2
+ (am+1 − am+2) sin

2 3ω

2
+ . . .

+(am+ν−1 − am+ν) sin
2 2νω

2
+ am+ν sin

2 2ν + 1

2
ω

]
,
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an expression whose terms all have the sign of sin ω
2
, and m

√
|am sin ω

2
| will tend towards

1, provided that sin ω
2
is not null.

We thus arrive at the same result in the more general case where we can determine

the quantities A such that the b are real, positive and decreasing, m
√
bm tending

towards 1, bm−1, bm−2, ..., bm−λm being null; because we can multiply successively by

two polynomials.

8. To obtain new applications of the established theorems in §2 and 3, we will

now calculate the order of magnitude of the coefficients of φm(t) when m becomes

infinite, supposing t = p
m
, p being an integer that varies with m, such that t remains

between two fixed limits between 0 and 1. We then have

Ltν
(m+ 1) . . . (m+ ν)

(p+ 1) . . . (p+ ν)
=

ν∑
x=1

L
1 + x

m

1 + x
p

= −1− t

mt

ν∑
1

x+
1− t2

2m2t2

ν∑
1

x2 − 1− t3

3m3t3

ν∑
1

x3 + . . . ;

or
1− tn

n
<

1− t2−1

n− 1
and

ν∑
1

xn < ν
ν∑
1

xn−1.

Consequently, the ratio of two consecutive terms

1− tn

1− tn−1

n− 1

nt

Σxn

Σxn−1

is smaller than ν
mt
< λ

t
< 1 if λ < t. We thus have

Ltν
(m+ 1) . . . (m+ ν)

(p+ 1) . . . (p+ ν)
< −1− t

2mt
ν(ν + 1)

+
1− t2

2m2t2
ν(ν + 1)(2ν + 1)

6
< −1− t

2mt
ν(ν + 1)(1− α),

α being able to be as small as we wish if λ is small enough.
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Similarly

L
1

p

p(p− 1) . . . (p− ν + 1)

m(m− 1) . . . (m− ν + 1)
=

ν−1∑
x=1

L
1− x

p

1− x
m

=
1− t

mt

ν−1∑
1

x− 1− t2

m2t2

ν−1∑
1

x2 + . . .

< −1− t

2mt
ν(ν − 1) < −1− t

2mt
ν(ν + 1)(1− α),

provided that ν > 2−α
α

.

Let 1−t
2t
(1−α) = k. The coefficient of am+ν in φm(t) is smaller than e−k

ν(ν+1)
m , and

that of am−ν is smaller than e−k 1−t
2mt

ν(ν−1), and smaller than e−k
ν(ν+1)

m if ν > 2−α
α

.

The sum of coefficients that follow that of am+ν is smaller than

λm∑
ν′=ν+1

e−k
ν′(ν′+1)

m <

∫ ∞

ν

e−k
x(x+1)

m dx = e−k
ν(ν+1)

m

∫ ∞

0

e−k
x(x+2ν+1)

m dx

< e−k
ν(ν+1)

m

∫ ∞

0

e−k
x(2x+1)

m dx =
m

k(2ν + 1)
e−k

ν(ν+1)
m .

We also have

∫ ∞

ν

e−k
x(x+1)

m dx < e−k
ν(ν+1)

m

∫ ∞

0

e−k x2

m dx =
1

2

√
πm

k
e−k

ν(ν+1)
m ;

an expression that is smaller than the preceding if ν <
√

m
kπ

− 1
2
.

The sum of coefficients situated beyond that of am−ν is smaller than

λm∑
x=ν+1

e−
1−t
2mt

x(x−1) <

∫ ∞

ν

e−
1−t
2mt

x(x−1)dx <

∫ ∞

ν

e−k
x(x−1)

m dx,

if ν ≥ 2−α
2
. But if 0 ≤ ν < 2−α

2
, the difference of the last two
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integrals is always smaller than

∫ α

0

e−
1−t
2mt

x(x−1)dx−
∫ α

0

e−
1−t
2m

(1−α)(x−1)dx

=

∫ 1

0

e−
1−t
2mt

x(x−1)dx+

∫ 1

0

e−
1−t
2m

(1−α)x(x−1)dx+

∫ α

0

e−
1−t
2mt

(x2−1)dx

=

∫ α

0

e−
1−t
2mt

[1−α(2ν−1)]dx < e
1−t
2mt

[
1 +

√
πmt

2(1− t)
− e−

1−t
2

α

√
πmt

2(1− t)(1− α)

]
,

an expression that remains negative if m is large enough.

Therefore the sum of coefficients coming after that of am−ν , similarly that the

sum of those that follow that of am+ν , is smaller than the smaller of the expressions
m

k(2ν+1)
e−k

ν(ν+1)
m , 1

2

√
πm
k
e−k

ν(ν+1)
m . And the sum of all coefficients is smaller than

√
πm
k
.

In φm(t) suppose the quantities an replaced by the real part a′n of ane
−iβt. If we

consider terms such that |a′| < A, their sum will be smaller than A
√

mπ
k
. If these

terms are not between a′m+ν , the sum will be smaller than A λm
k(2ν+1)

e−k
ν(ν+1)

m .

9. Let, for an unlimited sequence of values of m, Am be a positive quantity,

variable with m, such that LAm

m
tends towards 0. Suppose that there exist in φm(t)

terms such that |a′m±ν | m
√

m
Am

remains smaller than a given quantity. Let ν be a

variable number with m, that we can suppose larger than
√
m; suppose there exist

terms, not between a′m∓ν , such that m
2
L
∣∣∣ a′

Am
< m

2

∣∣∣ remains equally finite. In the case

where ν√
mLm

does not tend towards 0, it suffices even that m
2
L
∣∣∣ a′

Am

∣∣∣ remains finite.

We can always choose k large enough, or t small enough, so that the sum of all these

terms in φm(t) is smaller than Am multiplied by a fixed quantity θ as small as we

wish.
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Let εm be the largest of the quantities 1
m
L
∣∣∣a′m±ν

Am

∣∣∣, where ν ≤ λm; whenm becomes

infinite, εm tends towards 0. If εm < Lm
m
, suppose ν >

√
HmLm, we then have

m

ν2
L

∣∣∣∣ a′Am

m

ν

∣∣∣∣ < 3

λII
.

If εm > Lm
m

and ν > m
√
Hεm, we will have

m

ν2
L

∣∣∣∣ a′Am

m

ν

∣∣∣∣ < 1

mHεm

[
mεm +

1

λ
L

1

Hεm

]
<

3

λH
.

Therefore, H being a fixed quantity that can be very small, the group of terms

that we are considering will comprise all those for which ν is greater than the larger

of the two quantities m
√
Hεm,

√
HmLm. We can still, after having removed terms

such that
∣∣∣ a′

Am

√
m
∣∣∣ or m

ν2
L
∣∣∣ a′

Am
× m

ν

∣∣∣ remains finite, search to make the others of the

same sign by the method of n° 3. Let α1, α2, . . . , αq be the absolute values of the

numbers ±ν1 that correspond to sign changes of the terms a′m+ν or a′m−ν that we

have kept between am±λm. Supposing that q
m

tends towards 0, we have seen that we

can form a function ψm(t) having all its terms positive, the first a′m being multiplied

by the factor

cosα1 cosα2 . . . cosαq >

(
2

πλm

)q

µ1µ2 . . . µq;

or

Lµ1 + Lµ2 + . . .+ Lµq >

q∑
ν=1

L
ν

3
>

∫ q

1

L
x

3
dx = qL

q

3
− q + 2

and

cosα1 cosα2 . . . cosαq >
( q

πeλm

)q

.

But we can obtain a function ψm(t) for which this first term will have a larger

value. Let ε be a quantity that tends towards 0, but also slowly enough that we want,

for example ε = 1
Lm

or 1
L(Lm)

. The numbers µ1, µ2, . . . , µq being arranged in order of
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increasing magnitude, let us form the sequence q
q
, q−1
q−1

, . . . , 1
1
. Let h be the number

of these quantities greater than ε, and 1
µq

the first that is smaller than ε, so that

ν > h. For the q − h values of µ such that µ
µq
< ε, let us make correspond the arc

ω1 =
π
4q

× µ
µq
; then µω remains smaller than π

4
, and Σω < (q − h)π

q
ε < πε. For the h

other values of µ, let us make correspond the arc ω1 =
π
4
ε, which gives

µnω1 =
π

4
εµn <

π

4

µn

µq

<
π

3
and Σω <

h

q
πε < πε.

Thus Σω tends towards 0, and µω1 remains smaller than π
3
. We then have

∑
L cosα >

h∑
L

(
2

π

h

q

)
+

q−h∑
L

(
2

π
ε
µq

q

)

= qL
2

π
− (q − h)Lq + hL

h

q
+

h∑
Ln+

q−h∑
Lµn.

The sign
∑h applying to the q − h values of n such that n

µn
< ε, the sign

∑q−h

to the h values of n such that n
µn
> ε. But µn <

n
q
and

h∑
Ln+

q−h∑
Lµn >

q∑
n=1

Ln = hLq − q + hL2,

∑
L cosα > −q

(
1 + L

π

2

)
+ hL

q2

2

and

cosα1 cosα2 . . . cosαq >

(
2

πe

)q (ε
2

)h

>
( ε

πe

)q

.

a′m being supposed positive, ψ′
m(t) will be larger than

a′m

(ε
2

)q
(

2

πe

)q

− θAm,
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and we will be sure that the point z = 1 is singular if we can determine ε tend-

ing towards 0, such that a′m
Am

(
ε
2

)q ( 2
πe

)q
does not tend towards 0, that is to say if

1
q

(
L a′m

Am
− qLπe

2

)
increases indefinitely, through positive values. This happens, in

particular, if 1
q
L a′

Am
increases indefinitely.

We can still apply here the principles of n° 5. We will first remove terms such that∣∣∣ a
Am

√
m
∣∣∣ or m

ν2
L
∣∣∣ a
Am

× m
ν

∣∣∣ remains finite. For each value of m, we will determine the

arc β such that q is minimum. If 1
q
L
∣∣∣ am
Am

cos(ωm − β)
∣∣∣ increases indefinitely, for an

unlimited sequence of values of m, the point z = eiω is singular. In the case where
h
q
tends towards 0, the point z = 1 is still singular if 1

q
L
∣∣∣ am
Am

cos(ωm − β)
∣∣∣ remains

larger than a quantity greater than Lπe
2
.

10. If, after having removed terms such that
∣∣∣ a
Am

√
m
∣∣∣ or m

ν2
L
∣∣∣ a
Am

× m
ν

∣∣∣ remains

finite, there remain in φm(t) only q terms, q
m

tending towards 0, making the substi-

tution z = eiωe
it
, the real parts of the terms kept in the new series will have at most q

sign changes; and, if 1
q
L
∣∣∣ amAm

∣∣∣ increases indefinitely, the point z = eiω will be singular

whatever ω may be.

We arrive at even more general results by noting that, to form here the function

ψm(t) of n° 3, it suffices to make correspond to each value of µ a single arc ω, and the

arc α = π
2
∓µω, such that cos(α∓µω) = 0. am∓µ representing the terms kept in φm(t),

suppose the µ divided into three groups: the first such that
∑

1
µ
tends towards 0; to

these values we will make correspond the arc ω = π
2µ
, so that cosα = 1, Σω tending

towards 0. µ1, µ2, . . . , µ
′
q being the other values arranged in order of magnitude, the

second group will comprise the q′ − h values of µ such that n
µn
< ε, and the third the

h values such that n
µn
> ε. ε is still a quantity that tends towards 0 when m becomes
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infinite. For the terms of the third group we take

ω =
π

3
· ε
q′

and for the second

ω =
π

3q′
× n

µn

.

Then µω remains smaller than π
3
and

∑
ω < π

3
ε tends towards 0. We still have

∑
L cosα =

′∑
L sin

πn

3q′
+

′′∑
L sin

πεµn

3q′
>

′∑
L
n

q′
+

′′∑
L
εµn

q′
> hL

ε

3
− q′,

cosα1 cosα2 . . . cosαq′ > e−q′
(ε
3

)h

>
( ε

3e

)q′

.

The function ψm(t) then reduces to the single term am cosα1 cosα2 . . . cosαq′ and

the neglected terms have a sum smaller than θAm.

If 1
h

(
L
∣∣∣ amAm

∣∣∣− q′
)
increases indefinitely, we can take

L
ε

3
=

1

h

(
Lq′ + q′ − L

∣∣∣∣ amAm

∣∣∣∣) .
Then ε tends towards 0 and we can suppose

h < q′ =

∣∣∣∣ amAm

∣∣∣∣ (ε3)h

× e−q′ and |ψm(t)| > Am(q
′ − θ).

All points of the circle of convergence are then singular. This happens, in partic-

ular, if 1
q′
L
∣∣∣ amAm

∣∣∣ increases indefinitely; or if, h′

q′
tending towards 0, 1

q′
L
∣∣∣ amAm

∣∣∣ remains

greater than a quantity larger than 1.

All points of the circle of convergence are still singular if h = 0, L
∣∣∣ amAm

∣∣∣ − q′

remaining greater than a given quantity that can be negative; and finally, in the case

where q′ = 0,
∣∣∣ amAm

∣∣∣ remaining greater than a given quantity larger than 0.
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We can note that q′ = 0 in the particular case where the terms that we keep reduce

to the form
∑
aνz

cν , cν+1−cν
Lcν

increasing indefinitely with cν . For if m = cν , acν being

any term of φm(t),
cν+1−cν

Lcν
also increases indefinitely, and we could find a quantity A

that increases indefinitely with ν, such that, for these terms, |cm−p − cν | > ApLcν ;

and as |cm−p − cν | < λcν , we will have

p <
λcν
ALcν

;

consequently, ∑ 1

µ
<

2

ALcν

(
1 +

1

2
+

1

3
+ . . .+

1

p

)
<

2

ALcν
(1 + Lp) <

2

A

[
1 +

1 + Lλ− L(ALcν)

Lcν

]
,

an expression that tends towards 0 if A increases indefinitely or even at the same

time as cν .

This happens, for example, if cν
νLν

increases constantly and indefinitely with ν; or

again if cν
Lν

grows constantly, cν
νLν2

increasing indefinitely.

Consider, for example, the series∑
zn · eωni · en2 cos(2πn2),

where 0 < β < 1, γ being a commensurable number smaller than 1 and greater than

the two quantities 1− β
2
, 3+β

4
.

Let us form φm(t) for values of m such that m2 is an integer, and let

Am = |am| = em
2

;

m
√

|am| then tends towards 1. N being any integer, let us divide the terms a into two

groups, the first comprising the terms an such that
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N
1
γ − 1

2
< n < N

1
γ +

1

2
.

For the terms of the second group we will have

N
1
γ +

1

2
< n < (N+ 1)

1
γ − 1

2

and if N is large enough, provided that γ′ < γ, we will have

N+
γ′

2
nγ−1 < nγ < N+ 1− γ′

2
nγ−1,

cos(2πnγ) < 1− 2γ′2n−2(1−γ);

so that for these terms∣∣∣∣am∓ν

Am

∣∣∣∣ < e(m∓ν)2+2γ′2(m∓ν)1+γ(1−γ)−m2

< e[∓2mν2−2γ′2m2−γ(1−γ)],

and
∣∣∣am∓ν

Am

√
m
∣∣∣ tends towards 0 if ν

m2γ−1 remains smaller than a quantity smaller than

2γ2

β
.

On the other hand, in φm(t),

|a| < em
2(1+λ)2 and

m

ν2
L

∣∣∣∣ a

Am

· m
ν

∣∣∣∣
will remain finite if m1+β

ν2
remains finite. And if γ > 3+β

4
, we should only keep in

φm(t) the terms of the first group, which are of the form aNz
cN , where cN

NLN
increases

constantly and indefinitely with N.

Consequently, all points of the circle of convergence are singular.

11. To apply the preceding results, we are led to study the order of magnitude

of the coefficients am of the series, when m becomes infinite. Let us first consider

the terms of modulus larger than 1; L|am|
m

tending towards 0, we can set L|am|
m

= 1
m/α

;

α remaining positive if m is large enough. |L|am||
Lm

= 1 − α remains smaller than 1,

but can nevertheless tend towards 1, in the case where α tends towards 0, such that

mα becomes infinite, for example, if |am| = e
m
Lm ; so that, for terms of modulus larger
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than 1, LL|am|
Lm

has an upper limit, for m = ∞, comprised between 1 and −∞.

Let β be this upper limit, which we will suppose finite. We could find an unlimited

sequence of values of m such that

em
β+ε

> |am| > em
β−ε

;

L|am|
mβ has an upper limit that can be comprised between 0 and ∞.

Let θ be this upper limit, which we will suppose finite; there will exist terms in

infinite number such that

e(θ+ε)mβ

> |am| > e(θ−ε)mβ

.

Similarly, if |am| remains smaller than 1, we could set

L

∣∣∣∣ 1

am

∣∣∣∣ = 1

mα
,

LL
∣∣∣ 1
am

∣∣∣
Lm

= 1− α

will have a lower limit, for m = ∞, comprised between 1 and −∞. Let β be this

lower limit, which we suppose positive; we will have an infinite number of terms

e−mβ−ε

> |am| > e−mβ+ε

,

and L|am|
mβ will have, for m = ∞, an upper limit θ that can be comprised between 0

and −∞.

In these two cases, we will form φm(t) for a sequence of values of m such that

e(θ+ε)mβ

> |am| > e(θ−ε)mβ

,

θ being the upper limit of L|am|
mβ , which can be positive or negative. Let Am = eθ

′mβ
,

θ′ < θ. For all terms of φm(t), we have

1

m
L

∣∣∣∣am∓ν

Am

∣∣∣∣ < [(θ + ε)(1 + λ)β − θ′]mβ−1,
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and the quantity εm of n° 9 is of order mβ−1; we can, consequently, in φm(t), suppose

ν < Hm
1+β
2 . We can, moreover, remove terms such that L|am∓ν | − θ′mβ + 1

2
Lm

remains finite, or negative. If θ − θ′ is chosen small enough, we can thus remove all

terms such that L|an|
nβ has an upper limit θ′′ < θ.

Let ω be an arc variable with m, and q the number of sign changes of the real

part of ane
−iω for the terms kept in φm(t). If

1

mβ
L
∣∣∣ωm − ω − π

2
= kπ

∣∣∣
tends towards 0, as well as

q

mβ
,

1
q
L
∣∣∣ amAm

cos(ωm − ω)
∣∣∣ increases indefinitely, and the point z = 1 is singular.

This happens in particular if

1

mβ

m+ν∑
m−ν

|ωn+1 − ωn|

tends towards 0, ωn corresponding to the only terms kept. And as ν < Hm
1+β
2 , we

can be sure that the point z = 1 is singular if, for these terms,

|ωn′ − ωn|n
1−β
2

tends towards 0, a′n and an being two consecutive terms.

Similarly, if

1

mβ

m+ν∑
m−ν

|ωn+1 − ωn − ω|

tends towards 0, the point z = e−iω is singular, a′n and an being two consecutive

terms, ∑
|ωn+1 − ωn − ω|
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is here replaced by

|ωn′ − ωn − (n− n′)ω + 2kπ|,

this arc being comprised between −π and +π.

These conditions can be fulfilled for several points and, in certain cases, for all the

circle of convergence. m being always such that L|am|
mβ tends towards θ, let us suppose

removed terms such that L|an|
nβ has an upper limit θ′ < θ and those such that

m

ν2

[
L|a| − θ′mβ + L

m

ν

]
remains finite, which allows us to suppose ν < Hm

1+β
2 . Let us divide the terms that

remain in φm(t) into three groups as in n° 10. We will be sure that all points of the

circle of convergence are singular if q′

mβ remains smaller than a quantity smaller than

θ − θ′, h
mβ tending towards 0, for an unlimited sequence of values of m considered.

This happens, for example, if we can choose θ − θ′ small enough so that q′

mβ tends

towards 0.

Suppose, for example, that after having removed terms such that L|an|
nβ has an

upper limit smaller than θ, we separate the others into two groups, the first of which

will be of the form Σaνz
cν ,

cν+1 − cν
Lcν

increasing indefinitely. We will conclude that all points of the circle of convergence

are singular if, for a sequence of values of m such that L|am|
mβ tends towards θ, there

remain between a
m∓Hm

1+β
2

only q′ terms of the second group, q′

mβ tending towards

0. θ can here represent the upper limit of L|an|
nβ for a partial sequence of values of n

comprised between m− λm and m+ λm.
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Consider, as an application, the series∑
zneωnien

β cos2n(πnγ),

where 0 < β < 1, γ being a number comprised between 1
2
and 1, which we will

suppose commensurable to simplify the reasoning. If nγ is an integer,

L|an| = nβ.

If we form, as in n° 10, terms such that

N
1
γ +

1

4
< n < (N+ 1)

1
γ − 1

4
,

we deduce

cos2n(πnγ) < (1− 1

4
γ′2n2(γ−1))2n < e−γ′2n2γ−1

,

which tends towards 0, and for these terms L|an|
nβ has upper limit 0, for n = ∞; the

other terms are such that

N
1
γ − 1

2
< n < N

1
γ +

1

2
;

if n = cN,
cN+1−cN

LcN
increases indefinitely, and L|an|

nβ has upper limit 1. All points of

the circle of convergence are therefore singular.

If LL|am|
Lm

has upper limit 1, θ = 0. We can then remove terms such that LL|am|
Lm

has

an upper limit smaller than 1, and if between am and am+2m there remain q terms,
q
m

tending towards 0, all points of the circle of convergence are singular.

12. If LL|an|
Ln

has upper limit 0, L|an|
Ln

will have an upper limit that can be comprised

between 0 and +∞. Similarly, if |an| remains smaller than 1,
LL| 1

an
|

Ln
has lower limit

0, L|an|
Ln

could have an upper limit comprised between 0 and −∞.
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In general, suppose that L|an|
Ln

has an upper limit β comprised between −∞ and

+∞; so that, for a sequence of values of m, we have

mβ+ε > |am| > mβ−ε.

Let Am = mβ′
, β′ < β. By choosing β − β′ small enough, we could remove from

φm(t) all terms such that L|an|
Ln

has an upper limit β′′ < β − 1
2
. And m

ν
L
∣∣∣ a
Am

· m
ν

∣∣∣ will
remain finite for ν <

√
HmLm, so that, in φm(t), we can suppose ν <

√
HmLm.

If the real parts of ane
−iωt, for the terms that remain, have q sign changes, and if

L|ωm−ω−π
2
±kπ|

Lm
and q

Lm
tend towards 0, the point z = 1 is singular. This happens,

in particular, if 1
Lm

∑
|ωn+1 − ωn| tends towards 0, and, consequently, if |ωn′−ωn|

n′−n

√
n
Ln

tends towards 0, an′ and an being two consecutive terms kept. If 1
Lm

∑
|ωn+1−ωn−ω|

tends towards 0, the point z = e−iω is singular.

Let a sequence of values of m such that L|am|
Lm

tends towards β, β being the upper

limit, for n = ∞, of L|an|
Ln

, at least when n remains comprised between m − λm and

m+λm. Let us suppose removed terms such that L|an|
Ln

has an upper limit β′ < β− 1
2

and those such that m
ν2

(
L|a| − β′Lm+ Lm

ν

)
remains finite, which allows us to suppose

ν <
√
HmLm; then let us divide the terms that remain into three groups, as in n° 10.

We will be sure that all points of the circle of convergence are singular if q′

Lm
remains

smaller than a quantity smaller than β−β′− 1
2
, h
Lm

tending towards 0. This happens,

in particular, if β − β′ − 1
2
can be chosen small enough so that q′

Lm
tends towards 0.
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This is the case, for example, of the series∑
zneωni · nβ cos2n(πnγ),

where

β >
1

2
, 1 > γ >

1

2
.

We can note that the number β + 1 is that which, according to M. Hadamard,

gives the order of the function on the circle of convergence. And the application of

the preceding method comes down to searching for singular points of maximum order,

and the cases where all points of the circle of convergence are of order β+1. We also

see that this order is only finite in the case where LL|am|
Lm

has upper limit 0; or if |am|

remains smaller than 1, when
LL| 1

am
|

Lm
has lower limit 0. In other cases, which seem to

have to be considered as more general, the order on the circle of convergence is equal

to ±∞.

13. A function being given, if we develop it in series following the powers of z−a,
a being arbitrary, there will generally be only one singular point on the circle of con-

vergence, and the analytical prolongation is possible, except in extremely particular

cases; but if we suppose the coefficients a of the series
∑
anz

n given arbitrarily, with

the sole condition that the radius of convergence is neither null nor infinite, the cases

where analytical prolongation is impossible are much more general, and we can even

wonder if the cases where the function can extend beyond the circle of convergence

should not be considered as an exception. To properly specify the question, it would

be necessary to make determined conventions on the way to appreciate the order of

generality of the series and the coefficients an when n becomes very large. The results

that I have obtained do not seem to me, moreover, of a nature to resolve this question

definitively; but I believe I should nevertheless point them out now by showing to

what extent the result seems probable.
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If the radius of convergence is 1, it seems natural to consider as the most general

the series in which |an| can have, when n is very large, the largest possible variations.

We will then have series for which LL|an|
Ln

will have an upper limit β comprised between

0 and 1, L|an|
nβ having upper limit θ for limit.

Suppose separated the terms such that L|an|
nβ remains greater than θ′ < θ; it seems

natural to consider as the most general the case where the number of terms of this

group, comprised between an and an′ , is infinitely small compared to n′ − n. We

have seen that all points of the circle of convergence are singular in the case where,

between a
n−Hn

1+β
2

and a
n+Hn

1+β
2
, the terms of this group can be divided into two,

some of the form Σaνz
cν , cν+1−cν

Lcν
increasing indefinitely, whose number can be, in this

interval, ε
Ln

· n 1+β
2 , the others in number εnβ.

The series thus obtained are already very general, without being able to consider

them as the most general. But they have been formed by comparing the value of φm(t)

at a point anywhere on the circle of convergence to eθm
β
. We could form series such

that φm(t) has at each point of this circle a value of a variable order of magnitude,

which would be even more general.

In summary, we come to form much more general series than those already known,

which cannot be prolonged analytically; and there is reason to think that we can form

even more general ones. Consequently, without being able to affirm definitively, it

seems probable that the most general series are those whose analytical prolongation

is impossible.
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